Microclimate regulation efficiency of the rural homegarden agroforestry system in the Western Sichuan Plain,China
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microclimate regulation efficiency of the rural homegarden agroforestry system in the Western Sichuan Plain,China
  • 作者:LIU ; Qin ; PENG ; Pei-hao ; WANG ; Yu-kuan ; XU ; Pei ; GUO ; Ying-man
  • 英文作者:LIU Qin;PENG Pei-hao;WANG Yu-kuan;XU Pei;GUO Ying-man;College of Earth Sciences,Chengdu University of Technology;Institute of Mountain Hazards and Environment,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 英文关键词:Homegarden;;Linpan;;Western Sichuan Plain;;Climate regulation;;Energy saving and emission reduction
  • 中文刊名:SDKB
  • 英文刊名:Journal of Mountain Science 山地科学学报(英文版)
  • 机构:College of Earth Sciences,Chengdu University of Technology;Institute of Mountain Hazards and Environment,Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 出版日期:2019-03-13
  • 出版单位:Journal of Mountain Science
  • 年:2019
  • 期:v.16
  • 基金:supported by the national Natural Science Foundation of China (No.41401664);; the “135” Strategic Program of the Institute of Mountain Hazards and Environment,CAS (No. SDS-135-1703)
  • 语种:英文;
  • 页:SDKB201903003
  • 页数:13
  • CN:03
  • ISSN:51-1668/P
  • 分类号:33-45
摘要
Traditional rural homegarden agroforestry systems(referred to as homegarden) in the Western Sichuan Plain of China are often referred to as "Linpan" in Chinese. These homegardens are usually composed of farm houses, trees, bamboos, and small patches of land for flowers, fruits and vegetables. Over the Western Sichuan Plain’s area of approximately 18,800 km~2, there were more than 200,000 homegardens, accommodating 72.5% of the region’s rural population. As a unique local, cultural, and ecological resource, homegardens continuously support peasant households with provisioning, regulation, and landscape ecosystem services. This study combined low height remote sensing used unmanned aerial vehicle(UAV) photography, field investigation, and instrument monitoring. We try to identify the composition and structural characteristics of homegardens, as well as climatic regulation effects of the different types of homegardens. Temperature data were collected both for summer(June to August 2016) and winter(December 2016 to February 2017). The result shows that:(1) the average area of homegardens was 0.67 ha(sizes ranging from 0.16 ha to 1.24 ha), and with vegetation coverage 43.5%-76.9%(including 310 plant species).(2)In comparision with outside the homegardens, the average temperature inside the homegardens was significantly lower in summer(approximately 0.31 ℃-0.90 ℃). Although, the lowest summer temperature was differentiatee in between 13:30-16:00. Especially, the thermal effects of the home gardens were ranged from 2.00℃-2.65℃ at high temperatures(≥30℃).(3) The cooling effect of homegardens were positively correlated(p<0.05) with tree area(X_1), vegetation coverage(X_2), tree coverage(X_3), tree species(X_4), and tree biomassper unit area(X_5), and the contribution rate was represented by X_3>X_4>X_5>X_2>X_1.(4)This study indicates the major role of homegardens for climate regulation and energy efficiency, providing suggestions for homegarden transformation and construction planning for new rural communities.
        Traditional rural homegarden agroforestry systems(referred to as homegarden) in the Western Sichuan Plain of China are often referred to as "Linpan" in Chinese. These homegardens are usually composed of farm houses, trees, bamboos, and small patches of land for flowers, fruits and vegetables. Over the Western Sichuan Plain’s area of approximately 18,800 km~2, there were more than 200,000 homegardens, accommodating 72.5% of the region’s rural population. As a unique local, cultural, and ecological resource, homegardens continuously support peasant households with provisioning, regulation, and landscape ecosystem services. This study combined low height remote sensing used unmanned aerial vehicle(UAV) photography, field investigation, and instrument monitoring. We try to identify the composition and structural characteristics of homegardens, as well as climatic regulation effects of the different types of homegardens. Temperature data were collected both for summer(June to August 2016) and winter(December 2016 to February 2017). The result shows that:(1) the average area of homegardens was 0.67 ha(sizes ranging from 0.16 ha to 1.24 ha), and with vegetation coverage 43.5%-76.9%(including 310 plant species).(2)In comparision with outside the homegardens, the average temperature inside the homegardens was significantly lower in summer(approximately 0.31 ℃-0.90 ℃). Although, the lowest summer temperature was differentiatee in between 13:30-16:00. Especially, the thermal effects of the home gardens were ranged from 2.00℃-2.65℃ at high temperatures(≥30℃).(3) The cooling effect of homegardens were positively correlated(p<0.05) with tree area(X_1), vegetation coverage(X_2), tree coverage(X_3), tree species(X_4), and tree biomassper unit area(X_5), and the contribution rate was represented by X_3>X_4>X_5>X_2>X_1.(4)This study indicates the major role of homegardens for climate regulation and energy efficiency, providing suggestions for homegarden transformation and construction planning for new rural communities.
引文
Alcazar SS,Olivieri F,Neila J(2016)Green roofs:Experimental and analytical study of its potential for urban microclimate regulation in Mediterranean-continental climates.Urban Climate 17:304-317.https://doi.org/10.1016/j.uclim.2016.02.004
    Anderson GB,Bell ML(2011)Heat Waves in the United States:Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S.Communities.Environmental Health Perspectives 119(2):210.https://doi.org/10.1289/ehp.1002313
    Asgarian A,Amiri BJ,Sakieh Y(2015)Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach.Urban Ecosystems 18(1):209-222.https://doi.org/10.1007/s11252-014-0387-7
    Caborn JM(2010)The influence of shelter-belts on microclimate.Quarterly Journal of the Royal Meteorological Society 81(347):112-115.https://doi.org/10.1002/qj.49708134727
    Cao X,Onishi A,Chen J,et al.(2010)Quantifying the cool island intensity of urban parks using ASTER and IKONOSdata.Landscape&Urban Planning 96(4):224-231.https://doi.org/10.1016/j.landurbplan.2010.03.008
    Chen QB(2011)Researches on the modes about conservation and development of Linpan in western Sichuan plain.Chinese Forestry Press,Beijing,China.pp.48-50.(In Chinese)
    Chen XL,Zhao HM,Li PX,et al.(2006)Remote sensing imagebased analysis of the relationship between urban heat island and land use/cover changes.Remote Sensing of Environment104(2):133-146.https://doi.org/10.1016/j.rse.2005.11.016
    Declet-Barreto J,Brazel AJ,Martin CA,et al.(2013)Creating the park cool island in an inner-city neighborhood:heat mitigation strategy for Phoenix,AZ.Urban Ecosystems 16(3):617-635.https://doi.org/10.1007/s11252-012-0278-8
    Doick K(2013)Air temperature regulation by urban trees and green infrastructure.Cfa Newsletter 60:14.
    Escobedo FJ,Kroeger T,Wagner JE.(2011)Urban forests and pollution mitigation:analyzing ecosystem services and disservices.Environmental Pollution 159(8-9):2078-2087.https://doi.org/10.1016/j.envpol.2011.01.010
    Fang ZR(2013)Settlement culture Study of Linpan in Chengdu Plain.Southeast University Press,Nanjing,China.(In Chinese)
    Galhena DH,Freed R,Maredia KM(2013)Home gardens:a promising approach to enhance household food security and wellbeing.Agriculture&Food Security 2(1):1-13.https://doi.org/10.1186/2048-7010-2-8
    Gao X,Xu A,Liu,L,et al.(2017)Understanding rural housing abandonment in China's rapid urbanization.Habitat International 67:13-21.https://doi.org/10.1016/j.habitatint.2017.06.009
    Georgi NJ,Zafiriadis K(2006)The impact of park trees on microclimate in urban areas.Urban Ecosystems 9(3):195-209.https://doi.org/10.1007/s11252-006-8590-9
    Guo YM,Xu P,Liu Q,et al.(2017)Spatial distribution characteristics of Linpan in Chengdu plain-a case of Pi county.Journal of Southwest China Normal University(Natural Science Edition)42(5):211-126.(In Chinese)
    Hao L,Fang Li(2007)The Inter-annual Climate change and heat island effect of Chengdu during the recent fiftyyears.Scientia Meteorologica Sinica 27(6):648-654.(In Chinese)
    Herrmann J,Matzarakis A(2012)Mean radiant temperature in idealised urban canyons--examples from Freiburg,Germany.International Journal of Biometeorology 56(1):199.https://doi.org/10.1007/s00484-010-0394-1
    Jenerette GD,Harlan SL,Brazel A,et al.(2007)Regional relationships between vegetation,surface temperature,and human settlement in a rapidly urbanizing ecosystem.Landscape Ecology 22(3):353-365.https://doi.org/10.1007/s10980-006-9032-z
    Leiwenjiang M(2008)Population,urbanization,and the environment.World Watch 9(1):235-246.
    Kabir ME,Webb EL.(2009)Household and homegarden characteristics in southwestern Bangladesh.Agroforestry Systems 75(2):129-145.https://doi.org/10.1007/s10457-008-9142-5
    Liu Q,Wang YK,Guo YM,et al.(2018)Morphological characteristics and composition of plant species and their distrbution patterns in Linpan of Chengdu plain.Acta Ecologica Sinica 38(10):1-9.(In Chinese)
    Liu XW,Zhang DX,Chen BM(2008)Characteristics of China,s town-level land use in rapid urbanization stage.Acta Geographica Sinica 63(3):301-310.(In Chinese)
    Karthigesu J,Sivachndiran S,Pushpakumara D,et al.(2016)Ecosystem services of homegarden agroforestry in Jaffna Peninsula.International Conference on Dry Zone Agriculture.https://www.researchgate.net/publication/311653897
    Kong F,Yin H,James P,et al.(2014)Effects of spatial pattern of greenspace on urban cooling in a large metropolitan area of eastern China.Landscape&Urban Planning 128(3):35-47.https://doi.org/10.1016/j.landurbplan.2014.04.018
    Koohafkan P,Altieri MA(2011)Globally important agricultural heritage systems(GIAHS).A Legacy for the Future.
    Kovats RS,Hajat S(2008)Heat stress and public health:a critical review.Annual Review of Public Health 29(1):41.https://doi.org/10.1146/annurev.publhealth.29.020907.090843
    Kumar BM,Nair PKR(2004)The enigma of tropical homegardens.Agroforestry Systems 61-62(1-3):135-152.https://doi.org/10.1023/B:AGFO.0000028995.13227.ca
    Lemonsu A,Masson V,Shashuabar L,et al.(2012)Inclusion of vegetation in the town energy balance model for modelling urban green areas.Geoscientific Model Development Discussions 5(2):1295-1340.https://doi.org/10.5194/gmd-5-1377-2012
    Leuzinger S,Vogt R,Christian K(2010)Tree surface temperature in an urban environment.Agricultural&Forest Meteorology 150(1):56-62.https://doi.org/10.1016/j.agrformet.2009.08.006
    Li J,Song C,Cao L,et al.(2011)Impacts of landscape structure on surface urban heat islands:A case study of Shanghai,China.Remote sensing of Environment 115(12):3249-3263.https://doi.org/10.1016/j.rse.2011.07.008
    Maroyi A(2009)Traditional homegardens and rural livelihoods in Nhema,Zimbabwe:a sustainable agroforestry system.International Journal of Sustainable Development&World Ecology 16(1):1-8.https://doi.org/10.1080/13504500902745895
    Mihalakakou G,Santamouris M,Papanikolaou N,et al.(2004)Simulation of the urban heat island phenomenon in mediterranean climates.Pure&Applied Geophysics 161(2):429-451.https://doi.org/10.1007/s00024-003-2447-4
    Mohri H,Lahoti S,Saito O,et al.(2013)Assessment of ecosystem services in homegarden systems in Indonesia,Sri Lanka,and Vietnam.Ecosystem Services 5:124-136.https://doi.org/10.1016/j.ecoser.2013.07.006
    Nath AJ,Das AK(2011)Carbon storage and sequestration in bamboo-based smallholder homegardens of Barak Valley,Assam.Current Science 100(2):229-233.https://www.researchgate.net/publication/236000939
    Oliveira S,Andrade H,Vaz T(2011)The cooling effect of green spaces as a contribution to the mitigation of urban heat:Acase study in Lisbon.Building&Environment 46(11):2186-2194.https://doi.org/10.1016/j.buildenv.2011.04.034
    Peters EB,Mcfadden JP(2010)Influence of seasonality and vegetation type on suburban microclimates.Urban Ecosystems 13(4):443-460.https://doi.org/10.1007/s11252-010-0128-5
    Potchter O,Cohen P,Bitan A(2006)Climatic behavior of various urban parks during hot and humid summer in the mediterranean city of Tel Aviv,Israel.International Journal of Climatology 26(12):1695-1711.https://doi.org/10.1002/joc.1330
    Prianto E,Windarta J,Harianja B(2017)The Role of Vegetation and Landscape in the Energy Efficiency-of Tropical Building.Advanced Science Letters 23(3):2211-2214.https://doi.org/10.1166/asl.2017.8671
    Qin Z,Li Z,Cheng FY,et al.(2016)Cooling and Humidifying effects of five landscape plant communities on summer days in Beijing.Scientia Silvae Sinicae 52(1):37-47.(In Chinese)
    Rahman MA,Moser A,Gold A,et al.(2018)Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days.Science of the Total Environment 633:100-111.https://doi.org/10.1016/j.scitotenv.2018.03.168
    Saha SK,Nair PKR,Nair VD,et al.(2009)Soil carbon stock in relation to plant diversity of homegardens in Kerala,India.Agroforestry Systems 76(1):53-65.https://doi.org/10.1007/s10457-009-9228-8
    Sahoo UK(2009)Traditional home gardens and livelihood security in North-East India.Journal of Food Agriculture&Environment 7(2):665-670.https://www.researchgate.net/publication/237747312
    Salmond JA,Tadaki M,Vardoulakis S,et al.(2016)Health and climate related ecosystem services provided by street trees in the urban environment.Environmental Health 15(Suppl 1):36.https://doi.org/10.1186/s12940-016-0103-6
    Saneinejad S,Moonen P,Carmeliet J(2014)Comparative assessment of various heat island mitigation measures.Building&Environment 73(3):162-170.https://doi.org/10.1016/j.buildenv.2013.12.013
    Santamouris M,Synnefa A,Karlessi T(2011)Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions.Solar Energy 85(12):3085-3102.https://doi.org/10.1016/j.solener.2010.12.023
    Sanusi R,Johnstone D,May P,et al.(2017)Microclimate benefits that different street tree species provide to sidewalk pedestrians relate to differences in Plant Area Index.Landscape&Urban Planning 157:502-511.https://doi.org/10.1016/j.landurbplan.2016.08.010
    Shao YC,zhuang JY,Li EH,et al.(2015)Regulating effects of urban canopy on microclimate.Chinese Journal of Ecology34(6):1532-1539.(In Chinese)
    Shu B(2012)Studies of agricultural landscppe in Chengdu plain.Southwest Jiaotong University Press,Chengdu,China.(In Chinese)
    Skelhorn CP,Levermore G,Lindley SJ(2016)Impacts on cooling energy consumption due to the UHI and vegetation changes in Manchester,UK.Energy&Buildings 122:150-159.https://doi.org/10.1016/j.enbuild.2016.01.035
    Streiling S,Matzarakis A(2003)Influence of single and small clusters of trees on the bioclimate of a city:A case study.Journal of Treeiculture 29(6):309-316.https://www.researchgate.net/publication/230754039
    Sun X,Li X,Guan Z,et al.(2017)The use of meteorological data to assess the cooling service of forests.Ecosystem Services 25:28-34.https://doi.org/10.1016/j.ecoser.2017.03.016
    Trinh LN,Watson JW,Hue NN,et al.(2003)Agrobiodiversity conservation and development in Vietnamese home gardens.Agriculture Ecosystems&Environment 97(1-3):317-344.https://doi.org/10.1016/S0167-8809(02)00228-1
    Yan H,Wu F,Dong L(2018)Influence of a large urban park on the local urban thermal environment.Science of the Total Environment 622-623:882-891.https://doi.org/10.1016/j.scitotenv.2017.11.327
    Yao SM,Zhang PY,Yu C,et al.(2014)The theory and practic of new urbanzation in China.Scientia Geographica Sinica 34(6):641-647.(In Chinese)
    Zhang B,Gao JX,Xie GD,et al.(2012)Preliminary evaluation of air temperature reduction of urban green spaces in Beijing.Acta Ecologica Sinica 32(24):7698-7705.(In Chinese)
    Zhang H,Uwasu M,Hara K,et al.(2011)Sustainable Urban Development and Land Use Change-A Case Study of the Yangtze River Delta in China.Sustainability 3(7):1074-1089.https://doi.org/10.3390/su2071074
    Zhuang JY,Zhang JC,Yang Y,et al.(2016)Effect of forest shelter-belt as a regional climate improver along the old course of the Yellow River,China.Agroforestry Systems 6:393-401.https://doi.org/10.1007/s10457-016-9928-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700