石笋记录的百年尺度水文、土壤过程及其与太阳活动的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Relationship between centennial-scale Asian hydroclimatic changes, soil processes, and solar activity indicated by stalagmite isotopic records
  • 作者:刘树双 ; 方一帆 ; 刘殿兵
  • 英文作者:LIU Shu-shuang;FANG Yi-fan;LIU Dian-bing;School of Geography, Nanjing Normal University;
  • 关键词:石笋 ; 百年尺度亚洲夏季风变化 ; 土壤过程 ; 太阳活动 ; 雾露洞
  • 英文关键词:stalagmite;;centennial-scale Asian summer monsoon variability;;soil processes;;solar activity;;Wulu Cave
  • 中文刊名:DQHX
  • 英文刊名:Geochimica
  • 机构:南京师范大学地理科学学院;
  • 出版日期:2019-01-26
  • 出版单位:地球化学
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(41672161);; 江苏省地理信息资源开发与利用协同创新中心项目;; 江苏高校优势学科建设工程资助项目(164320H116)
  • 语种:中文;
  • 页:DQHX201901004
  • 页数:14
  • CN:01
  • ISSN:44-1398/P
  • 分类号:45-58
摘要
基于黔西南雾露洞高分辨率石笋同位素记录,重建了62.0~58.2 ka BP和20.9~15.5 ka BP期间亚洲夏季风水文历史和洞穴岩溶环境变化过程。两支石笋(Wu58和Wu60)实测16个~(230)Th年龄和966组氧、碳同位素数据。结果显示,深海氧同位素3阶段(MIS 3)早期和2阶段(MIS 2)期间,千年尺度δ~(18)O变化非常显著,而δ~(13)C则在稳定的背景值下,呈百年尺度波动。去趋势发现,δ~(18)O指示的百年尺度弱季风事件与δ~(13)C指示的土壤CO_2产率衰减过程变化一致。两组同位素变化呈相似的百年尺度波动,共同周期约300 a,说明本区域土壤CO_2产率变化与百年尺度亚洲夏季风变化密切相关。在变化幅度上,δ~(13)C的振幅远大于δ~(18)O(约1.5~3.5倍),表明碳同位素变化对于气候响应具有放大效应,或者δ~(13)C与δ~(18)O变化具有不同的地球化学行为。通过与大气~(14)C、冰芯~(10)Be记录对比,发现百年尺度季风强弱及岩溶过程变化与太阳活动指标具有相似性,说明太阳活动对百年尺度季风强弱和土壤CO_2产率起到主控作用。可能的途径是,太阳活动通过海-陆热力差,影响夏季风强度和当地土壤湿度水平,并经生态效应进一步放大。然而,在百年尺度上,δ~(18)O振幅仅为0.4‰,远小于千年尺度变化(1.5‰)。因此,千年尺度亚洲夏季风突变的诱发因子可能不直接受控于太阳活动,需要其他驱动因素或者气候系统内部放大机制来解释。
        Wulu Cave is in the Yun-Gui Plateau, southern China. Modern climatic conditions in this region are dictated by the tropical Indian and subtropical Asian summer monsoon(ASM). Mean annual temperature at the site is approximately 14 ℃, with a maximum during July(20.8 ℃) and a minimum during January(4.3 ℃). The annual precipitation is approximately 1400 mm, peaking(900 mm) during the summer(June through September) and reaching a minimum(80 mm) during the winter(December through February). The cave is approximately 800 m long and overlain by 40 m of Triassic limestone bedrock. The inner part of the cave chamber(500–800 m from the entrance) is covered by 2-m-high deposits of clay and debris. It is poorly ventilated in the chamber, and the temperature inside approximates the annually averaged surface temperature with a relative humidity of approximately 100%. At this site, current vegetation is mostly composed of deciduous herbs(C4-type vegetation). A thin patchy soil cover(5–10 cm) above the cave is only observed in fractures and karstic depressions.A detailed history of the Asian hydroclimatic and local soil processes during the period 62.0–58.2 ka BP and 20.9–15.5 ka BP was reconstructed from two high-resolution stalagmite isotopic records(Samples Wu60 and Wu58) from Wulu Cave. Constrained by 16 U/Th dates and 966 isotopic subsamples, the two isotopic records show a close coupling of centennial-scale changes in the ASM and soil CO2 production during early Marine Isotope Stage(MIS) 3 and MIS 2. Over the two time windows, a striking difference can be observed in stalagmite δ~(18)O and δ~(13)C signals: millennial-scale variability is clear in the δ~(18)O record, while the δ~(13)C signal is characterized by persistent centennial oscillations around the stable mean values. At centennial scale, the detrended δ~(18)O record agrees well with the δ~(13)C, exhibiting a common periodicity of approximately 300 years. During weak ASM episodes, increased δ~(13)C values are observed, implying that decreased soil CO2 production is closely correlated with centennial-scale ASM variability. Comparatively, the amplitude of the δ~(13)C changes is much larger than(approximately 1.5 to 3.5 times) that of the δ~(18)O signal, lending support to the speleothem carbon isotope being more sensitive to climatic changes, or the δ~(18)O and δ~(13)C changes would have different geochemical behaviors at a centennial scale. When compared to atmospheric 14 C and ice-core 10 Be records, the two detrended isotopic sequences agree well with the solar activity. Particularly, weak solar activity generally corresponds to weak ASM and a decline in soil CO_2 production. This correlation shows that solar activity plays a dominant role in controlling the ASM intensity and soil CO_2 production. One possible link between them is that external forcing controls the ASM intensity via the thermal contrast between the ocean and land. Subsequently, the balance of soil moisture co-varies with the hydrological responses. Finally, soil CO2 production is further amplified by an ecological effect. However, changes in detrended δ~(18)O values fall within an amplitude of 0.4‰, which is significantly smaller than that of millennial-scale events(approximately 1.5‰), implying that millennial-scale ASM variability is not directly driven by solar activity, and that other forcing factors or amplifying processes of the climatic system are needed.
引文
[1]Dansgaard W,Johnsen S L,Clausen H B,DahlJensen D,Gundestrup N S,Hammer C U.Evidence for general instability of past climate from a 250-kyr ice-core record[J].Nature,1993,364(6434):218-220.
    [2]Johnsen S J,Clausen H B,Dansgaard W,Fuhrer K,Gundestrup N,Hammer C U,Iversen P,Jouzel J,Stauffer B,Steffensen J P.Irregular glacial interstadials recorded in a new Greenland ice core[J].Nature,1992,359(6393):311-313.
    [3]Ganopolski A,Rahmstorf S.Rapid changes of glacial climate simulated in a coupled climate model[J].Nature,2001,409(6817):153-158.
    [4]McManus J F,Francois R,Gherardi J M,Keigwin L D,BrownLeger S.Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J].Nature,2004,428(6985):834-837.
    [5]Geel B V,Raspopov O M,Renssen H,Plicht J V D,Dergachev V A,Meijer H A J.The role of solar forcing upon climate change[J].Quatern Sci Rev,1999,18(3):331-338.
    [6]Rahmstorf S.Timing of abrupt climate change:A precise clock[J].Geophys Res Lett,2003,30(30):405-414.
    [7]Braun H,Christl M,Rahmstorf S,Ganopolski A,Mangini A,Kubatzki C,Roth K,Kromer B.Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model[J].Nature,2005,438(7065):208-211.
    [8]Clemens S C.Millennial-band climate spectrum resolved and linked to centennial-scale solar cycles[J].Quatern Sci Rev,2005,24(5/6):521-531.
    [9]Clement A C,Peterson L C.Mechanisms of abrupt climate change of the last glacial period[J].Rev Geophys,2008,46(4):RG4002.
    [10]Bond G,Kromer B,Beer J,Muscheler R,Evans M N,Showers W,Hoffmann S,Lotti-Bond R,Hajdas I,Bonani G.Persistent solar influence on North Atlantic climate during the Holocene[J].Science,2001,294(5549):2130-2136.
    [11]Neff U,Burns S J,Mangini A,Mudelsee M,Fleitmann D,Matter A.Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago[J].Nature,2001,411(6835):290-293.
    [12]Hu F S,Kaufman D,Yoneji S,Nelson D,Shemesh A,Huang Y,Tian J,Bond G,Clegg B,Brown T.Cyclic variation and solar forcing of Holocene climate in the Alaskan subarctic[J].Science,2003,301(5641):1890-1893.
    [13]Fleitmann D,Burns S J,Mudelsee M,Neff U,Kramers J,Mangini A,Matter A.Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman[J].Science,2003,300(5626):1737-1739.
    [14]Wang Y J,Cheng H,Edwards R L,He X Q,Kong X G,An Z S,Wu J Y,Kelly M J,Dykoski C A,Li X D.The Holocene Asian monsoon:Links to solar changes and North Atlantic climate[J].Science,2005,308(5723):854-857.
    [15]Gupta A K,Das M,Anderson D M.Solar influence on the Indian summer monsoon during the Holocene[J].Geophys Res Lett,2005,32(17):261-261.
    [16]Schmidt G A,Jungclaus J H,Ammann C M,Bard E,Braconnot P,Crowley T J,Delaygue G,Joos F,Krivova N A,Muscheler R.Climate forcing reconstructions for use in PMIP simulations of the Last Millennium(v1.0)[J].Geosci Model Dev,2011,4(3):1549-1586.
    [17]Turney C,Baillie M,Clemens S,Brown D,Palmer J,Pilcher J,Reimer P,Leuschner H H.Testing solar forcing of pervasive Holocene climate cycles[J].J Quatern Sci,2010,20(6):511-518.
    [18]Marchal O.Optimal estimation of atmospheric 14C production over the Holocene:Paleoclimate implications[J].Clim Dynam,2005,24(1):71-88.
    [19]Lang C,Leuenberger M,Schwander J,Johnsen S.16℃rapid temperature variation in central Greenland 70,000 years ago[J].Science,1999,286(5441):934-937.
    [20]Severinghaus J P,Brook E J.Abrupt climate change at the end of the Last Glacial Period inferred from trapped air in polar ice[J].Science,1999,286(5441):930-934.
    [21]Landais A,Barnola J M,Masson-Delmotte V,Jouzel J,Chappellaz J,Caillon N,Huber C,Leuenberger M,Johnsen S J.Acontinuous record of temperature evolution over a sequence of Dansgaard-Oeschger events during Marine Isotopic Stage 4(76 to 62 kyr BP)[J].Geophys Res Lett,2004,31(22):217-244.
    [22]Ditlevsen P D,Anderssen K K,Scensson A.The DO-climate events are probably noise induced:Statistical investigation of the claimed 1470 years cycle[J].Clim Past,2006,3(3):129-134.
    [23]Braun H,Ditlevsen P,Kurths J,Mudelsee M.Limitations of red noise in analysing Dangaard-Oeschger events[J].Clim Past,2010,5(4):85-92.
    [24]Wagner G,Beer J,Masarik J,Muscheler R,Kubik P W,Mende W,Laj C,Raisbeck G M,Yiou F.Presence of the solar de Vries cycle(~205 years)during the last ice age[J].Geophys Res Lett,2001,28(2):303-306.
    [25]Peristykh A N,Damon P E.Persistence of the Gleissberg88-year solar cycle over the last~12,000 years:Evidence from cosmogenic isotopes[J].J Geophys Res,2003,108(A1).doi:org/10.1029/2002JA009390
    [26]Muscheler R,Beer J.Solar forced Dansgaard/Oeschger events?[J].Geophys Res Lett,2006,33(20):382-385.
    [27]Haam E,Huybers P.A test for the presence of covariance between time-uncertain series of data with application to the Dongge Cave speleothem and atmospheric radiocarbon records[J].Paleoceanography,2010,25:PA2209.doi:10.1029/2008PA001713
    [28]Liu H Y,Lin Z S,Qi X Z,Li Y X,Yu M T,Yang H,Shen J.Possible link between Holocene East Asian monsoon and solar activity obtained from the EMD method[J].Nonlin Processes Geophys,2012,19(4):421-430.
    [29]Steinhilber F,Abreu J A,Beer J,Brunner I,Christl M,Fischer H,Heikkil?U,Kubik P W,Mann M,McCraken K G,Miller H,Miyahara H,Oerter H,Wilhelms F.9,400 years of cosmic radiation and solar activity from ice cores and tree rings[J].PNAS,2012,109(16):5967-5971.
    [30]Liu D B,Wang Y J,Cheng H,Edwards R L,Kong X G,Wang X F,Hardt B,Wu J Y,Chen S T,Jiang X Y,He Y Q,Dong J G,Zhao K.Sub-millennial variability of Asian monsoon intensity during the early MIS 3 and its analogue to the ice age terminations[J].Quatern Sci Rev,2010,29(9/10):1107-1115.
    [31]Zhao K,Wang Y J,Edwards R L,Cheng H,Liu D B.Highresolution stalagmiteδ18O records of Asian monsoon changes in central and southern China spanning the MIS 3/2 transition[J].Earth Planet Sci Lett,2010,298(1):191-198.
    [32]Duan F C,Liu D B,Cheng H,Wang Y J,Kong X G,Chen S T.A high-resolution monsoon record of millennial-scale oscillations during Late MIS 3 from Wulu Cave,south-west China[J].J Quatern Sci,2014,29(1):83-90.
    [33]Wang B.Rainy season of the Asian-Pacific summer monsoon[J].J Clim,2002,15(4):386-398.
    [34]Shao Q F,Pons-Branchu E,Zhu Q P,Wang W,Valladas H,Fontugne M.High precision U/Th dading of the rock paintings at Mt.Huashan,Guangxi,southern China[J].Quatern Res,2017,88(1):1-13.
    [35]Hercman H,Pawlak J.MOD-AGE:An age-depth model construction algorithm[J].Quatern Geochronol,2012,12:1-10.
    [36]Hendy C H.The isotopic geochemistry of speleothems-I.The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators[J].Geochim Cosmochim Acta,1971,35(8):801-824.
    [37]Dayem K E,Molnar P,Battisti D S,Roe G H.Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia[J].Earth Planet Sci Lett,2010,295(1/2):219-230.
    [38]谭明,南素兰.中国季风区降水氧同位素年际变化的“环流效应”初探[J].第四纪研究,2010,30(3):620-622.Tan Ming,Nan Su-lan.Primary investigation on interannual changes in the circulation effect of precipitation oxygen isotopes in monsoon China[J].Quatern Sci,2010,30(3):620-622(in Chinese).
    [39]Pausata F S R,Battisti D S,Nisancioglu K H,Bitz C M.Chinese stalagmiteδ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J].Nat Geosci,2011,4(7):474-480.
    [40]Tan M.Circulation effect:Response of precipitationδ18O to the ENSO cycle in monsoon regions of China[J].Clim Dynam,2014,42(3/4):1067-1077.
    [41]Wang Y J,Cheng H,Edwards R L,An Z S,Wu J Y,Shen C C,Dorale J A.A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave,China[J].Science,2001,294(5550):2345-2348.
    [42]Yuan D X,Cheng H,Edwards R L,Dykoski C A,Kelly M J,Zhang M L,Qing J M,Lin Y S,Wang Y J,Wu J Y,Dorale J A,An Z S,Cai Y J.Timing,duration,and transitions of the Last Interglacial Asian monsoon[J].Science,2004,304(5670):575-578.
    [43]Cheng H,Edwards,R L,Wang Y J,Kong X G,Ming Y F,Kelly M J,Wang X F,Gallup C D.A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations[J].Geology,2006,34(3):217-220.
    [44]Wang Y J,Cheng H,Edwards,R L,Kong X G,Shao X H,Chen S T,Wu J Y,Jiang X Y,Wang X F,An Z S.Millennialand orbital-scale changes in the East Asian monsoon over the past 224,000 years[J].Nature,2008,451(7182):1090-1093.
    [45]Nan S L,Tan M,Zhao P.Evaluation of the ability of the Chinese stalagmiteδ18O to record the variation in atmospheric circulation during the second half of the 20th century[J].Clim Past,2014,10(3):975-985.
    [46]谭明.近千年气候格局的环流背景:ENSO态的不确定性分析与再重建[J].中国科学:地球科学,2016,46(5):657-673.Tan Ming.Circulation background of climate patterns in the past millennium:Uncertainty analysis and re-reconstruction of ENSO-like state circulation[J].Sci China Earth Sci,2016,46(5):657-673(in Chinese).
    [47]Cheng H,Sinha A,Wang X,Cruz F W,Edwards R L.The Global Paleomonsoon as seen through speleothem records from Asia and the Americas[J].Clim Dynam,2012,39(5):1045-1062.
    [48]IAEA/WMO.Global network of isotopes in precipitation[Z].The GNIP Database,2011.http://isohis.iaea.org
    [49]程海,艾思本,王先锋,汪永进,孔兴功,袁道先,张美良,林玉石,覃嘉铭,冉景丞.中国南方石笋氧同位素记录的重要意义[J].第四纪研究,2005,25(2):157-163.Cheng Hai,Edwards R L,Wang Xian-feng,Wang Yong-jin,Kong Xing-gong,Yuan Dao-xian,Zhang Mei-liang,Lin Yu-shi,Qin Jia-ming,Ran Jing-cheng.Oxygen isotope records of stalagmites from southern China[J].Quatern Sci,2005,25(2):157-163(in Chinese with English abstract).
    [50]Liu Z,Wen X,Brady E C,Otto-Bliesner B,Yu G,Lu H Y,Cheng H,Wang Y J,Zh W P,Ding Y H,Edwards R L,Cheng J,Liu W,Yang H.Chinese cave records and the East Asia summer monsoon[J].Quatern Sci Rev,2014,83(1):115-128.
    [51]Liu D B,Wang Y J,Cheng H,Edwards R L,Kong X G,Li T Y.Strong coupling of centennial-scale changes of Asian monsoon and soil processes derived from stalagmiteδ18O andδ13Crecords,southern China[J].Quatern Res,2016,85(3):333-346.
    [52]Dorale J A,Edwards R L,Ito E,González L A.Climate and vegetation history of the Midcontinent from 75 to 25 ka:Aspeleothem record from Crevice Cave,Missouri,USA[J].Science,1998,282(5395):1871-1874.
    [53]Genty D,Blamart D,Ouahdi R,Gilmour M A,Baker A,Jouzel J,Van-Exter S.Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data[J].Nature,2003,421(6925):833-837.
    [54]李红春,顾德隆,Stott L D,袁道先,陈文寄,李铁英.北京石花洞石笋500年来的δ13C记录与古气候变化及大气CO2浓度变化的关系[J].中国岩溶,1997,16(4):285-295.Li Hong-chun,Gu De-long,Stott L D,Yuan Dao-xian,Chen Wen-ji,Li Tie-ying.Interannual-resolutionδ13C record of stalagmites as proxy for the changes in precipitation and atmospheric CO2 in shihua cave,Beijing[J].Carsol Sinica,1997,16(4):285-295(in Chinese with English abstract).
    [55]Baskaran M,Krishnamurthy R V.Speleothems as proxy for the carbon isotope composition of atmospheric CO2[J].Geophys Res Lett,1993,20(24):2905-2908.
    [56]Rudzka D,Mcdermott F,Baldini L M,Fleitmann D,Moreno A,Stoll H.The coupledδ13C-radiocarbon systematics of three Late Glacial/early Holocene speleothems:Insights into soil and cave processes at climatic transitions[J].Geochim Cosmochim Acta,2011,75(15):4321-4339.
    [57]Mühlinghaus C,Scholz D,Mangini A.Modelling fractionation of stable isotopes in stalagmites[J].Geochim Cosmochim Acta,2009,73(24):7275-7289.
    [58]Hansen M,Dreybrodt W,Scholz D.Chemical evolution of dissolved inorganic carbon species flowing in thin water films and its implications for(rapid)degassing of CO2 during speleothem growth[J].Geochim Cosmochim Acta,2013,107:242-251.
    [59]Oster J L,Monta?ez I P,Guilderson T P,Sharp W D,Banner JL.Modeling speleothemδ13C variability in a central Sierra Nevada cave using 14C and 87Sr/86Sr[J].Geochim Cosmochim Acta,2010,74(18):5228-5242.
    [60]Lambert W J,Aharon P.Controls on dissolved inorganic carbon andδ13C in cave waters from DeSoto Caverns:Implications for speleothemδ13C assessments[J].Geochim Cosmochim Acta,2011,75(3):753-768.
    [61]Riechelmann D F C,Deininger M,Scholz D,Riechelmann S,Schro¨der-Ritzrau A,Sp?tl C,Richter D K,Mangini A,Immenhauser A.Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite:Comparison of cave precipitates and model data[J].Geochim Cosmochim Acta,2013,103(2):232-244.
    [62]Fairchild I J,Smith C L,Baker A,Fuller L,Spotl C,Mattey D,McDermott F,E I M F.Modification and preservation of environmental signals in speleothems[J].Earth Sci Rev,2006,75(1-4):105-153.
    [63]Burns S J,Fleitmann D,Mudelsee M,Neff U,Matter A,Mangini A.A 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from south Oman[J].J Geophys Res Atmos,2002,107(D20):ACL 9-1-ACL 9-9.
    [64]Cruz Jr F W,Burns,S J,Karmann I,Sharp W D,Vuille M,Ferrari J A.A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the late Pleistocene[J].Quatern Sci Rev,2006,25(21/22):2749-2761.
    [65]Andrews J A,Schlesinger W H.Soil CO2 dynamics,acidifycation,and chemical weathering in a temperate forest with experimental CO2 enrichment[J].Global Biogeochem Cy,2001,15(1):149-162.
    [66]Genty D,Baker A,Massault M,Proctor C,Gilmour M,Pons-Branchu E,Hamelin B.Dead carbon in stalagmites:Carbonate bedrock paleodissolution vs.ageing of soil organic matter:Implications for 13C variations in speleothems[J].Geochim Cosmochim Acta,2001,65(20):3443-3457.
    [67]Frappier A,Sahagian D,González LA,Carpenter S J.El Ni?o events recorded by stalagmite carbon isotopes[J].Science,2002,298(5593):565.
    [68]Scholz D,Frisia S,Borsato A,Sp?tl C.Holocene climate variability in north-eastern Italy:Potential influence of the NAO and solar activity recorded by speleothem data[J].Clim Past,2012,8(4):1367-1383.
    [69]Li J Y,Li T Y.Seasonal and annual changes in soil/cave air p CO2 and theδ13CDIC of cave drip water in response to changes in temperature and rainfall[J].Appl Geochem,2018,93:94-101.
    [70]Liu D B,Wang Y J,Cheng H,Edwards R L.High-resolution stalagmiteδ13C record of soil processes from southwestern China during the early MIS 3[J].Sci Bull,2013,58(7):796-802.
    [71]Cosford J,Qing H R,Mattey D,Eglington B,Zhang M L.Climatic and local effects on stalagmiteδ13C values at Lianhua Cave,China[J].Palaeogeogr Palaeoclimatol Palaeoecol,2009,280(1):235-244.
    [72]Tan L C,Cai Y J,Cheng H,Edwards R L,Gao Y L,Xu H,Zhang H W,An Z S.Centennial-to decadal-scale monsoon precipitation variations in the upper Hanjiang River region,China over the past 6650 years[J].Earth Planet Sci Lett,2018,482:580-590.
    [73]Cheng H,Sp?tl C,Breitenbach S F M,Sinha A,Wassenburg JA,Jochum K P,Scholz D,Li X L,Yi L,Peng Y B,LüY B,Zhang P Z,Votintseva A,Loginov V,Ning Y F,Kathayat G,Edwards R L.Climate variations of Central Asia on orbital to millennial timescales[J].Sci Rep,2016,6:36975.
    [74]Springer G S,Rowe H D,Hardt B,Edwards R L,Cheng H.Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America[J].Geophys Res Lett,2008,35:L17703.
    [75]Springer G S,Rowe H D,Hardt B,Cheng H,Edwards R L.East central North America climates during marine isotope stages 3-5[J].Geophys Res Lett,2014,41(9):3233-3237.
    [76]Kotlia B S,Singh A K,Joshi L M,Dhaila B S.Precipitation variability in the Indian Central Himalaya during last ca.4,000 years inferred from a speleothem record:Impact of Indian Summer Monsoon(ISM)and Westerlies[J].Quatern Int,2015,371:244-253.
    [77]Mickler P J,Banner J L,Stern L,Asmerom Y,Edwards R L,Ito E.Stable isotope variations in modern tropical speleothems:Evaluating equilibrium vs.kinetic isotope effects[J].Geochim Cosmochim Acta,2004,68(21):4381-4393.
    [78]Deininger M,Fohlmeister J,Scholz D,Mangini A.Isotope disequilibrium effects:The influence of evaporation and ventilation effects on the carbon and oxygen isotope comparison of speleothems-A model approach[J].Geochim Cosmochim Acta,2012,96(11):57-79.
    [79]Tremaine D M,Froelich P N,Wang Y.Speleothem calcite farmed in situ:Modern calibration ofδ18O andδ13C paleoclimate proxies in a continuouslymonitored natural cave system[J].Geochim Cosmochim Acta,2011,75(17):4929-4950.
    [80]Dreybrodt W,Scholz D.Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothem:From soil water to speleothem calcite[J].Geochim Cosmochim Acta,2011,75(3):734-752.
    [81]Vaks A,Bar-Matthews M,Ayalon A,Schilman B,Gilmour M,Hawkesworth C J,Frumkin A,Kaufman A,Matthews A.Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel[J].Quatern Res,2003,59(2):182-193.
    [82]Kong X G,Wang Y J,Wu J Y,Cheng H,Edwards R L,Wang X F.Complicated responses of stalagmiteδ13C to climate change during the last glaciation from Hulu Cave,Nanjing,China[J].Sci China(D),2005,48(12):2174-2181.
    [83]姜修洋,孔兴功,汪永进,程海,张春霞.神农架三宝洞倒数第二次冰期高分辨率石笋δ13C记录[J].第四纪研究,2011,31(1):1-7.Jiang Xiu-yang,Kong Xing-gong,Wang Yong-jin,Cheng Hai,Zhang Chun-xia.A high-resolution stalagmiteδ13C record from Sanbao cave over the penultimate glaciation[J].Quatern Sci,2011,31(1):1-7(in Chinese with English abstract).
    [84]刘淑华,杨亮,黄嘉仪,陈琳,陈琼,米小建,贺海波,周厚云.川东北宋家洞高分辨率石笋δ13C记录与D/O事件5-10[J].地球化学,2015,44(5):413-420.Liu Shu-hua,Yang Liang,Huang Jia-yi,Chen Lin,Chen Qiong,Mi Xiao-jian,He Hai-bo,Zhou Hou-yun.A high-resolution speleothemδ13C record from Songjia Cave in NE Sichuan,Central China and D/O event 5 to 10[J].Geochimica,2015,44(5):413-420(in Chinese with English abstract).
    [85]Carvalhais N,Forkel M,Khomik M,Bellarby J,Jung M,Migliavacca M,Mu M,Saatchi S,Santoro M,Thurner M,Weber U,Ahrens B,Beer C,Cescatti A,Randerson J T,Reichstein M.Global covariation of carbon turnover times with climate in terrestrial ecosystems[J].Nature,514(7521):213-217.
    [86]Reimer P J,Bard E,Bayliss A,Beck J W,Blackwell P G,Bronk R C,Buck C E,Cheng H,Edwards R L,Friedrich M,Grootes P M,Guilderson T P,Haflidason H,Hajdas I,HattéC,Heaton T J,Hoffmann D L,Hogg A G,Hughen K A,Kaiser KF,Kromer B,Manning S W,Niu M,Reimer R W,Richards DA,Scott E M,Southon J R,Staff R A,Turney C S M,Plicht JV D.IntCal13 and marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J].Radiocarbon,2013,55(4):1869-1887.
    [87]Muscheler R,Beer J,Wagner G,Laj C,Kissel C,Raisbeck GM,Yiou F,Kubik P W.Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and14C records[J].Earth Planet Sci Lett,2004,219(3/4):325-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700