Semiconductor quantum computation
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Semiconductor quantum computation
  • 作者:Xin ; Zhang ; Hai-Ou ; Li ; Gang ; Cao ; Ming ; Xiao ; Guang-Can ; Guo ; Guo-Ping ; Guo
  • 英文作者:Xin Zhang;Hai-Ou Li;Gang Cao;Ming Xiao;Guang-Can Guo;Guo-Ping Guo;Key Laboratory of Quantum Information,CAS, University of Science and Technology of China;Synergetic Innovation Center of Quantum Information & Quantum Physics,University of Science and Technology of China;
  • 英文关键词:semiconductor quantum dot;;qubit;;quantum computation;;spin manipulation
  • 中文刊名:NASR
  • 英文刊名:国家科学评论(英文版)
  • 机构:Key Laboratory of Quantum Information,CAS, University of Science and Technology of China;Synergetic Innovation Center of Quantum Information & Quantum Physics,University of Science and Technology of China;
  • 出版日期:2019-01-15
  • 出版单位:National Science Review
  • 年:2019
  • 期:v.6
  • 基金:supported by the National Key Research and Development Program of China(2016YFA0301700);; the National Natural Science Foundation of China(61674132,11674300 and11625419);; the Strategic Priority Research Program of the CAS(XDB24030601);; the Anhui initiative in Quantum information Technologies(AHY080000)
  • 语种:英文;
  • 页:NASR201901016
  • 页数:23
  • CN:01
  • ISSN:10-1088/N
  • 分类号:38-60
摘要
Semiconductors, a significant type of material in the information era, are becoming more and more powerful in the field of quantum information. In recent decades, semiconductor quantum computation was investigated thoroughly across the world and developed with a dramatically fast speed. The research varied from initialization, control and readout of qubits, to the architecture of fault-tolerant quantum computing.Here, we first introduce the basic ideas for quantum computing, and then discuss the developments of single-and two-qubit gate control in semiconductors. Up to now, the qubit initialization, control and readout can be realized with relatively high fidelity and a programmable two-qubit quantum processor has even been demonstrated. However, to further improve the qubit quality and scale it up, there are still some challenges to resolve such as the improvement of the readout method, material development and scalable designs. We discuss these issues and introduce the forefronts of progress. Finally, considering the positive trend of the research on semiconductor quantum devices and recent theoretical work on the applications of quantum computation, we anticipate that semiconductor quantum computation may develop fast and will have a huge impact on our lives in the near future.
        Semiconductors, a significant type of material in the information era, are becoming more and more powerful in the field of quantum information. In recent decades, semiconductor quantum computation was investigated thoroughly across the world and developed with a dramatically fast speed. The research varied from initialization, control and readout of qubits, to the architecture of fault-tolerant quantum computing.Here, we first introduce the basic ideas for quantum computing, and then discuss the developments of single-and two-qubit gate control in semiconductors. Up to now, the qubit initialization, control and readout can be realized with relatively high fidelity and a programmable two-qubit quantum processor has even been demonstrated. However, to further improve the qubit quality and scale it up, there are still some challenges to resolve such as the improvement of the readout method, material development and scalable designs. We discuss these issues and introduce the forefronts of progress. Finally, considering the positive trend of the research on semiconductor quantum devices and recent theoretical work on the applications of quantum computation, we anticipate that semiconductor quantum computation may develop fast and will have a huge impact on our lives in the near future.
引文
1.Feynman RP.Simulating physics with computers.Int J Theor Phys 1982;21:467-88.
    2.Devoret MH and Schoelkopf RJ.Superconducting circuits for quantum information:an outlook.Science 2013;339:1169-74.
    3.Wendin G.Quantum information processing with superconducting circuits:a review.Rep Prog Phys 2017;80:106001.
    4.H?ffner H,Roos CF and Blatt R.Quantum computing with trapped ions.Phys Rep 2008;469:155-203.
    5.Monroe C and Kim J.Scaling the ion trap quantum processor.Science 2013;339:1164-9.
    6.Awschalom DD,Bassett LC and Dzurak AS et al.Quantum spintronics:engineering and manipulating atom-like spins in semiconductors.Science 2013;339:1174-9.
    7.Xin Z,Hai-Ou L and Ke W et al.Qubits based on semiconductor quantum dots.Chin Phys B 2018;27:020305.
    8.Weber JR,Koehl WF and Varley JB et al.Quantum computing with defects.Proc Natl Acad Sci USA 2010;107:8513-8.
    9.Childress L and Hanson R.Diamond NV centers for quantum computing and quantum networks.MRS Bull 2013;38:134-8.
    10.Vandersypen LMK and Chuang IL.NMR techniques for quantum control and computation.Rev Mod Phys 2005;76:1037-69.
    11.Shor PW.Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.SIAM Rev 1999;41:303-32.
    12.Grover LK.A fast quantum mechanical algorithm for database search.In:Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing.New York:Association for Computing Machinery;1996,212-9.
    13.Wiebe N,Braun D and Lloyd S.Quantum algorithm for data fitting.Phys Rev Lett 2012;109:050505.
    14.Moll N,Barkoutsos P and Bishop LS et al.Quantum optimization using variational algorithms on near-term quantum devices.Quantum Sci Technol 2018;3:030503.
    15.Biamonte J,Wittek P and Pancotti N et al.Quantum machine learning.Nature2017;549:195-202.
    16.Nielsen MA and Chuang IL.Quantum Computation and Quantum Information.Cambridge:Cambridge University Press,2000.
    17.Zajac DM,Sigillito AJ and Russ M et al.Resonantly driven CNOT gate for electron spins.Science 2018;359:439-42.
    18.Yoneda J,Takeda K and Otsuka T et al.A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%.Nat Nanotechnol2018;13:102-6.
    19.Fowler AG,Mariantoni M and Martinis JM et al.Surface codes:towards practical large-scale quantum computation.Phys Rev A 2012;86:032324.
    20.Loss D and Di Vincenzo DP.Quantum computation with quantum dots.Phys Rev A 1998;57:120-6.
    21.Hanson R,Kouwenhoven LP and Petta JR et al.Spins in few-electron quantum dots.Rev Mod Phys 2007;79:1217-65.
    22.Zwanenburg FA,Dzurak AS and Morello A et al.Silicon quantum electronics.Rev Mod Phys 2013;85:961-1019.
    23.Nadj-Perge S,Frolov S and Bakkers E et al.Spin-orbit qubit in a semiconductor nanowire.Nature 2010;468:1084-7.
    24.Jarillo-Herrero P,Sapmaz S and Dekker C et al.Electron-hole symmetry in a semiconducting carbon nanotube quantum dot.Nature 2004;429:389-92.
    25.Wei D,Li H-O and Cao G et al.Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates.Sci Rep 2013;3:3175.
    26.Zhang Z-Z,Song X-X and Luo G et al.Electrotunable artificial molecules based on van der Waals heterostructures.Sci Adv 2017;3:e1701699.
    27.Luo G,Zhang Z-Z and Li H-O et al.Quantum dot behavior in transition metal dichalcogenides nanostructures.Front Phys 2017;12:128502.
    28.Klein DL,Mc Euen PL and Katari JEB et al.An approach to electrical studies of single nanocrystals.Appl Phys Lett 1996;68:2574-6.
    29.Kane BE.A silicon-based nuclear spin quantum computer.Nature 1998;393:133-7.
    30.Hile SJ,Fricke L and House MG et al.Addressable electron spin resonance using donors and donor molecules in silicon.Sci Adv 2018;4:eaaq1459.
    31.Muhonen JT,Dehollain JP and Laucht A et al.Storing quantum information for 30 seconds in a nanoelectronic device.Nat Nanotechnol 2014;9:986-91.
    32.Hayashi T,Fujisawa T and Cheong HD et al.Coherent manipulation of electronic states in a double quantum dot.Phys Rev Lett 2003;91:226804.
    33.Chan KW,Huang W and Yang CH et al.Assessment of a silicon quantum dot spin qubit environment via noise spectroscopy.Phys Rev Appl 2018;10:044017.
    34.Huang W,Yang CH and Chan KW et al.Fidelity benchmarks for two-qubit gates in silicon.ar Xiv:1805.05027v3.
    35.Hill CD,Peretz E and Hile SJ et al.A surface code quantum computer in silicon.Sci Adv 2015;1:e1500707.
    36.O’Gorman J,Nickerson NH and Ross P et al.A silicon-based surface code quantum computer.npj Quantum Inf 2016;2:15019.
    37.Pica G,Lovett BW and Bhatt RN et al.Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings.Phys Rev B 2016;93:035306.
    38.Veldhorst M,Eenink HGJ and Yang CH et al.Silicon CMOS architecture for a spin-based quantum computer.Nat Commun 2017;8:1766.
    39.Li R,Petit L and Franke DP et al.A crossbar network for silicon quantum dot qubits.Sci Adv 2018;4:eaar3960.
    40.Zhang X,Li H-O and Wang K et al.Quantum computation based on semiconductor quantum dots.Sci Sin Inf 2017;47:1255-76.
    41.Elzerman JM,Hanson R and Willems van Beveren LH et al.Single-shot readout of an individual electron spin in a quantum dot.Nature 2004;430:431-5.
    42.Hanson R,van Beveren LW and Vink I et al.Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates.Phys Rev Lett2005;94:196802.
    43.Morello A,Pla JJ and Zwanenburg FA et al.Single-shot readout of an electron spin in silicon.Nature 2010;467:687-91.
    44.Petta JR,Johnson AC and Taylor JM et al.Coherent manipulation of coupled electron spins in semiconductor quantum dots.Science 2005;309:2180-4.
    45.Koppens FHL,Buizert C and Tielrooij KJ et al.Driven coherent oscillations of a single electron spin in a quantum dot.Nature 2006;442:766-71.
    46.Harvey-Collard P,D’Anjou B and Rudolph M et al.High-fidelity single-shot readout for a spin qubit via an enhanced latching mechanism.Phys Rev X2018;8:021046.
    47.Nakajima T,Delbecq MR and Otsuka T et al.Robust single-shot spin measurement with 99.5%fidelity in a quantum dot array.Phys Rev Lett 2017;119:017701.
    48.Studenikin S,Thorgrimson J and Aers G et al.Enhanced charge detection of spin qubit readout via an intermediate state.Appl Phys Lett 2012;101:233101.
    49.Fogarty M,Chan K and Hensen B et al.Integrated silicon qubit platform with single-spin addressability,exchange control and single-shot singlet-triplet readout.Nat Commun 2018;9:4370.
    50.Koppens FHL,Nowack KC and Vandersypen LMK.Spin echo of a single electron spin in a quantum dot.Phys Rev Lett 2008;100:236802.
    51.Schreiber LR and Bluhm H.Silicon comes back.Nat Nanotechnol 2014;9:966-8.
    52.Kawakami E,Scarlino P and Ward DR et al.Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot.Nat Nanotechnol 2014;9:666-70.
    53.Veldhorst M,Hwang JCC and Yang CH et al.An addressable quantum dot qubit with fault-tolerant control-fidelity.Nat Nanotechnol 2014;9:981-5.
    54.Brunner D,Gerardot BD and Dalgarno PA et al.A coherent single-hole spin in a semiconductor.Science 2009;325:70-2.
    55.Maurand R,Jehl X and Kotekar-Patil D et al.A CMOS silicon spin qubit.Nat Commun 2016;7:13575.
    56.Watzinger H,Kukuˇcka J and Vukuˇsi′c L et al.A germanium hole spin qubit.Nat Commun 2018;9:3902.
    57.Salfi J,Mol JA and Culcer D et al.Charge-insensitive single-atom spin-orbit qubit in silicon.Phys Rev Lett 2016;116:246801.
    58.Bogan A,Studenikin S and Korkusinski M et al.Landau-Zener-St¨uckelbergMajorana interferometry of a single hole.Phys Rev Lett 2018;120:207701.
    59.Liles SD,Li R and Yang CH et al.Spin and orbital structure of the first six holes in a silicon metal-oxide-semiconductor quantum dot.Nat Commun 2018;9:3255.
    60.Hendrickx NW,Franke DP and Sammak A et al.Gate-controlled quantum dots and superconductivity in planar germanium.Nat Commun 2018;9:2835.
    61.Hu Y,Kuemmeth F and Lieber CM et al.Hole spin relaxation in Ge-Si coreshell nanowire qubits.Nat Nanotechnol 2012;7:47-50.
    62.Levy J.Universal quantum computation with spin-1/2 pairs and Heisenberg exchange.Phys Rev Lett 2002;89:147902.
    63.Jock RM,Jacobson NT and Harvey-Collard P et al.A silicon metal-oxidesemiconductor electron spin-orbit qubit.Nat Commun 2018;9:1768.
    64.Foletti S,Bluhm H and Mahalu D et al.Universal quantum control of twoelectron spin quantum bits using dynamic nuclear polarization.Nat Phys 2009;5:903-8.
    65.Wu X,Ward DR and Prance JR et al.Two-axis control of a singlet-triplet qubit with an integrated micromagnet.Proc Natl Acad Sci USA 2014;111:11938-42.
    66.Bluhm H,Foletti S and Mahalu D et al.Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath.Phys Rev Lett 2010;105:216803.
    67.Bluhm H,Foletti S and Neder I et al.Dephasing time of Ga As electron-spin qubits coupled to a nuclear bath exceeding 200μs.Nat Phys 2011;7:109-13.
    68.Maune BM,Borselli MG and Huang B et al.Coherent singlet-triplet oscillations in a silicon-based double quantum dot.Nature 2012;481:344-7.
    69.Shulman MD,Harvey SP and Nichol JM et al.Suppressing qubit dephasing using real-time Hamiltonian estimation.Nat Commun 2014;5:5156.
    70.Malinowski FK,Martins F and Nissen PD et al.Notch filtering the nuclear environment of a spin qubit.Nat Nanotechnol 2016;12:16-20.
    71.Nichol JM,Orona LA and Harvey SP et al.High-fidelity entangling gate for double-quantum-dot spin qubits.npj Quantum Inf 2017;3:3.
    72.Petta J,Lu H and Gossard A.A coherent beam splitter for electronic spin states.Science 2010;327:669-72.
    73.Dehollain JP,Muhonen JT and Tan KY et al.Single-Shot readout and relaxation of singlet and triplet states in exchange-coupled 31P electron spins in silicon.Phys Rev Lett 2014;112:236801.
    74.Broome M,Watson T and Keith D et al.High-fidelity single-shot singlet-triplet readout of precision-placed donors in silicon.Phys Rev Lett 2017;119:046802.
    75.Harvey-Collard P,Jacobson NT and Rudolph M et al.Coherent coupling between a quantum dot and a donor in silicon.Nat Commun 2017;8:1029.
    76.Di Vincenzo DP,Bacon D and Kempe J et al.Universal quantum computation with the exchange interaction.Nature 2000;408:339-42.
    77.Laird EA,Taylor JM and Di Vincenzo DP et al.Coherent spin manipulation in an exchange-only qubit.Phys Rev B 2010;82:075403.
    78.Medford J,Beil J,and Taylor JM et al.Self-consistent measurement and state tomography of an exchange-only spin qubit.Nat Nanotechnol 2013;8:654-9.
    79.Medford J,Beil J and Taylor JM et al.Quantum-dot-based resonant exchange qubit.Phys Rev Lett 2013;111:050501.
    80.Eng K,Ladd TD and Smith A et al.Isotopically enhanced triple-quantum-dot qubit.Sci Adv 2015;1:e1500214.
    81.Malinowski FK,Martins F and Nissen PD et al.Symmetric operation of the resonant exchange qubit.Phys Rev B 2017;96:045443.
    82.Gaudreau L,Granger G and Kam A et al.Coherent control of three-spin states in a triple quantum dot.Nat Phys 2012;8:54-8.
    83.Petta JR,Johnson AC and Marcus CM et al.Manipulation of a single charge in a double quantum dot.Phys Rev Lett 2004;93:186802.
    84.Petersson KD,Petta JR and Lu H et al.Quantum coherence in a one-electron semiconductor charge qubit.Phys Rev Lett 2010;105:246804.
    85.Dovzhenko Y,Stehlik J and Petersson KD et al.Nonadiabatic quantum control of a semiconductor charge qubit.Phys Rev B 2011;84:161302.
    86.Shi Z,Simmons C and Ward DR et al.Coherent quantum oscillations and echo measurements of a Si charge qubit.Phys Rev B 2013;88:075416.
    87.Stehlik J,Dovzhenko Y and Petta J et al.Landau-Zener-St¨uckelberg interferometry of a single electron charge qubit.Phys Rev B 2012;86:121303.
    88.Cao G,Li H-O and Tu T et al.Ultrafast universal quantum control of a quantumdot charge qubit using Landau-Zener-St¨uckelberg interference.Nat Commun2013;4:1401.
    89.Kim D,Ward DR and Simmons CB et al.Microwave-driven coherent operation of a semiconductor quantum dot charge qubit.Nat Nanotechnol 2015;10:243-7.
    90.Mi X,Kohler S and Petta J.Landau-Zener interferometry of valley-orbit states in Si/SiGe double quantum dots.Phys Rev B 2018;98:161404.
    91.Shi Z,Simmons CB and Prance JR et al.Fast hybrid silicon double-quantumdot qubit.Phys Rev Lett 2012;108:140503.
    92.Koh TS,Gamble JK and Friesen M et al.Pulse-gated quantum-dot hybrid qubit.Phys Rev Lett 2012;109:250503.
    93.Kim D,Shi Z and Simmons CB et al.Quantum control and process tomography of a semiconductor quantum dot hybrid qubit.Nature 2014;511:70-4.
    94.Thorgrimsson B,Kim D and Yang Y-C et al.Extending the coherence of a quantum dot hybrid qubit.npj Quantum Inf 2017;3:32.
    95.Kim D,Ward DR and Simmons CB et al.High-fidelity resonant gating of a silicon-based quantum dot hybrid qubit.npj Quantum Inf 2015;1:15004.
    96.Cao G,Li H-O and Yu G-D et al.Tunable hybrid qubit in a Ga As double quantum dot.Phys Rev Lett 2016;116:086801.
    97.Wang B-C,Cao G and Li H-O et al.Tunable hybrid qubit in a triple quantum dot.Phys Rev Appl 2017;8:064035.
    98.Russ M,Zajac DM and Sigillito AJ et al.High-fidelity quantum gates in Si/Si Ge double quantum dots.Phys Rev B 2018;97:085421.
    99.Nowack KC,Shafiei M and Laforest M et al.Single-shot correlations and twoqubit gate of solid-state spins.Science 2011;333:1269-72.
    100.Brunner R,Shin YS and Obata T et al.Two-qubit gate of combined single-spin rotation and interdot spin exchange in a double quantum dot.Phys Rev Lett2011;107:146801.
    101.Meunier T,Calado VE and Vandersypen LMK.Efficient controlled-phase gate for single-spin qubits in quantum dots.Phys Rev B 2011;83:121403.
    102.Veldhorst M,Yang CH and Hwang JCC et al.A two-qubit logic gate in silicon.Nature 2015;526:410-4.
    103.Watson TF,Philips SGJ and Kawakami E et al.A programmable two-qubit quantum processor in silicon.Nature 2018;555:633-7.
    104.Xue X,Watson T and Helsen J et al.Benchmarking gate fidelities in a Si/SiGe two-qubit device.ar Xiv:1811.04002.
    105.Braakman FR,Barthelemy P and Reichl C et al.Long-distance coherent coupling in a quantum dot array.Nat Nanotechnol 2013;8:432-7.
    106.Busl M,Granger G and Gaudreau L et al.Bipolar spin blockade and coherent state superpositions in a triple quantum dot.Nat Nanotechnol 2013;8:261-5.
    107.Baart TA,Fujita T and Reichl C et al.Coherent spin-exchange via a quantum mediator.Nat Nanotechnol 2016;12:26-30.
    108.Malinowski FK,Martins F and Smith TB et al.Fast spin exchange between two distant quantum dots.ar Xiv:1808.09736.
    109.Nakajima T,Delbecq MR and Otsuka T et al.Coherent transfer of electron spin correlations assisted by dephasing noise.Nat Commun 2018;9:2133.
    110.Noiri A,Nakajima T and Yoneda J et al.A fast quantum interface between different spin qubit encodings.Nat Commun 2018;9:5066.
    111.Broome MA,Gorman SK and House MG et al.Two-electron spin correlations in precision placed donors in silicon.Nat Commun 2018;9:980.
    112.Kalra R,Laucht A and Hill CD et al.Robust two-qubit gates for donors in silicon controlled by hyperfine interactions.Phys Rev X 2014;4:021044.
    113.Tosi G,Mohiyaddin FA and Schmitt V et al.Silicon quantum processor with robust long-distance qubit couplings.Nat Commun 2017;8:450.
    114.Taylor JM,Engel HA and D¨ur W et al.Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins.Nat Phys 2005;1:177-83.
    115.Taylor JM,Srinivasa V and Medford J.Electrically protected resonant exchange qubits in triple quantum dots.Phys Rev Lett 2013;111:050502.
    116.Shinkai G,Hayashi T and Ota T et al.Correlated coherent oscillations in coupled semiconductor charge qubits.Phys Rev Lett 2009;103:056802.
    117.Van Weperen I,Armstrong B and Laird E et al.Charge-state conditional operation of a spin qubit.Phys Rev Lett 2011;107:030506.
    118.Shulman MD,Dial OE and Harvey SP et al.Demonstration of entanglement of electrostatically coupled singlet-triplet qubits.Science 2012;336:202-5.
    119.Petersson K,Smith C and Anderson D et al.Microwave-driven transitions in two coupled semiconductor charge qubits.Phys Rev Lett 2009;103:016805.
    120.Li H-O,Cao G and Yu G-D et al.Conditional rotation of two strongly coupled semiconductor charge qubits.Nat Commun 2015;6:7681.
    121.Ward DR,Kim D and Savage DE et al.State-conditional coherent charge qubit oscillations in a Si/Si Ge quadruple quantum dot.npj Quantum Inf 2016;2:16032.
    122.Li H-O,Cao G and Yu G-D et al.Controlled quantum operations of a semiconductor three-qubit system.Phys Rev Appl 2018;9:024015.
    123.Childress L,S?rensen AS and Lukin MD.Mesoscopic cavity quantum electrodynamics with quantum dots.Phys Rev A 2004;69:042302.
    124.Lin Z-R,Guo G-P and Tu T et al.Generation of quantum-dot cluster states with a superconducting transmission line resonator.Phys Rev Lett 2008;101:230501.
    125.Frey T,Leek PJ and Beck M et al.Dipole coupling of a double quantum dot to a microwave resonator.Phys Rev Lett 2012;108:046807.
    126.Petersson KD,Mc Faul LW and Schroer MD et al.Circuit quantum electrodynamics with a spin qubit.Nature 2012;490:380-3.
    127.Mi X,Benito M and Putz S et al.A coherent spin-photon interface in silicon.Nature 2018;555:599-603.
    128.Delbecq MR,Bruhat LE and Viennot JJ et al.Photon-mediated interaction between distant quantum dot circuits.Nat Commun 2013;4:1400.
    129.Deng G-W,Wei D and Li S-X et al.Coupling two distant double quantum dots with a microwave resonator.Nano Lett 2015;15:6620-5.
    130.Mi X,Cady JV and Zajac DM et al.Strong coupling of a single electron in silicon to a microwave photon.Science 2017;355:156-8.
    131.Stockklauser A,Scarlino P and Koski JV et al.Strong coupling cavity QED with gate-defined double quantum dots enabled by a high impedance resonator.Phys Rev X 2017;7:011030.
    132.Bruhat LE,Cubaynes T and Viennot JJ et al.Circuit QED with a quantum-dot charge qubit dressed by Cooper pairs.Phys Rev B 2018;98:155313.
    133.van Woerkom DJ,Scarlino P and Ungerer JH et al.Microwave photonmediated interactions between semiconductor qubits.Phys Rev X 2018;8:041018.
    134.Scarlino P,van Woerkom DJ and Mendes UC et al.Coherent microwave photon mediated coupling between a semiconductor and a superconductor qubit.ar Xiv:1806.10039v1.
    135.Samkharadze N,Zheng G and Kalhor N et al.Strong spin-photon coupling in silicon.Science 2018;359:1123-7.
    136.Landig AJ,Koski JV and Scarlino P et al.Coherent spin-photon coupling using a resonant exchange qubit.Nature 2018;560:179-84.
    137.Benito M,Mi X and Taylor JM et al.Input-output theory for spin-photon coupling in Si double quantum dots.Phys Rev B 2017;96:179-84.
    138.Harvey SP,B?ttcher CGL and Orona LA et al.Coupling two spin qubits with a high-impedance resonator.Phys Rev B 2018;97:235409.
    139.Russ M and Burkard G.Long distance coupling of resonant exchange qubits.Phys Rev B 2015;92:205412.
    140.Zajac DM,Hazard TM and Mi X et al.Scalable gate architecture for a onedimensional array of semiconductor spin qubits.Phys Rev Appl 2016;6:054013.
    141.Han T,Chen M and Cao G et al.Radio-frequency measurement in semiconductor quantum computation.Sci China Phys Mech Astron 2017;60:057301.
    142.Lu W,Ji Z and Pfeiffer L et al.Real-time detection of electron tunnelling in a quantum dot.Nature 2003;423:422-5.
    143.Reilly DJ,Marcus CM and Hanson MP et al.Fast single-charge sensing with a rf quantum point contact.Appl Phys Lett 2007;91:162101.
    144.Cassidy MC,Dzurak AS and Clark RG et al.Single shot charge detection using a radio-frequency quantum point contact.Appl Phys Lett 2007;91:222104.
    145.Barthel C,Reilly DJ and Marcus CM et al.Rapid single-shot measurement of a singlet-triplet qubit.Phys Rev Lett 2009;103:160503.
    146.Barthel C,Kj?rgaard M and Medford J et al.Fast sensing of double-dot charge arrangement and spin state with a radio-frequency sensor quantum dot.Phys Rev B 2010;81:161308.
    147.Wang K,Payette C and Dovzhenko Y et al.Charge relaxation in a singleelectron Si/Si Ge double quantum dot.Phys Rev Lett 2013;111:046801.
    148.Vink I,Nooitgedagt T and Schouten R et al.Cryogenic amplifier for fast realtime detection of single-electron tunneling.Appl Phys Lett 2007;91:123512.
    149.Curry MJ,England TD and Bishop N et al.Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolartransistor.Appl Phys Lett 2015;106:203505.
    150.Tracy LA,Luhman DR and Carr SM et al.Single shot spin readout using a cryogenic high-electron-mobility transistor amplifier at sub-Kelvin temperatures.Appl Phys Lett 2016;108:063101.
    151.Petersson KD,Smith CG and Anderson D et al.Charge and spin state readout of a double quantum dot coupled to a resonator.Nano Lett 2010;10:2789-93.
    152.Colless JI,Mahoney AC and Hornibrook JM et al.Dispersive readout of a fewelectron double quantum dot with fast rf gate sensors.Phys Rev Lett 2013;110:046805.
    153.Gonzalez-Zalba MF,Barraud S and Ferguson AJ et al.Probing the limits of gate-based charge sensing.Nat Commun 2015;6:6084.
    154.Ahmed I,Haigh JA and Schaal S et al.Radio-frequency capacitive gate-based sensing.Phys Rev Appl 2018;10:014018.
    155.Pakkiam P,Timofeev A and House M et al.Single-shot single-gate RF spin readout in silicon.ar Xiv:1809.01802.
    156.Urdampilleta M,Niegemann DJ and Chanrion E et al.Gate-based high fidelity spin read-out in a CMOS device.ar Xiv:1809.04584.
    157.West A,Hensen B and Jouan A et al.Gate-based single-shot readout of spins in silicon.arXiv:1809.01864.
    158.Stehlik J,Liu Y-Y and Quintana C et al.Fast charge sensing of a cavity-coupled double quantum dot using a Josephson parametric amplifier.Phys Rev Appl2015;4:014018.
    159.Scarlino P,van Woerkom DJ and Stockklauser A et al.All-microwave control and dispersive readout of gate-defined quantum dot qubits in circuit quantum electrodynamics.ar Xiv:1711.01906v1.
    160.Hornibrook JM,Colless JI and Mahoney AC et al.Frequency multiplexing for readout of spin qubits.Appl Phys Lett 2014;104:103108.
    161.Tian-Yi H,Guang-Wei D and Da W et al.Multiplexing read-out of charge qubits by a superconducting resonator.Chin Phys Lett 2016;33:047301.
    162.Ito T,Otsuka T and Nakajima T et al.Four single-spin Rabi oscillations in a quadruple quantum dot.ar Xiv:1805.06111.
    163.Yang C,Rossi A and Ruskov R et al.Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting.Nat Commun 2013;4:2069.
    164.Ruskov R,Veldhorst M and Dzurak AS et al.Electron g-factor of valley states in realistic silicon quantum dots.Phys Rev B 2018;98:245424.
    165.Hao X,Ruskov R and Xiao M et al.Electron spin resonance and spinvalley physics in a silicon double quantum dot.Nat Commun 2014;5:3860.
    166.Gamble JK,Harvey-Collard P and Jacobson NT et al.Valley splitting of singleelectron Si MOS quantum dots.Appl Phys Lett 2016;109:253101.
    167.Mi X,P′eterfalvi CG and Burkard G et al.High-resolution valley spectroscopy of Si quantum dots.Phys Rev Lett 2017;119:176803.
    168.Ibberson DJ,Bourdet L and Abadillo-Uriel JC et al.Electric-field tuning of the valley splitting in silicon corner dots.Appl Phys Lett 2018;113:053104.
    169.Neyens SF,Foote RH and Thorgrimsson B et al.The critical role of substrate disorder in valley splitting in Si quantum wells.Appl Phys Lett 2018;112:243107.
    170.Angus SJ,Ferguson AJ and Dzurak AS et al.Gate-defined quantum dots in intrinsic silicon.Nano Lett 2007;7:2051-5.
    171.Lim W,Zwanenburg F and Huebl H et al.Observation of the single-electron regime in a highly tunable silicon quantum dot.Appl Phys Lett 2009;95:242102.
    172.Ferdous R,Chan KW and Veldhorst M et al.Interface-induced spin-orbit interaction in silicon quantum dots and prospects for scalability.Phys Rev B 2018;97:241401.
    173.Zajac D,Hazard T and Mi X et al.A reconfigurable gate architecture for Si/Si Ge quantum dots.Appl Phys Lett 2015;106:223507.
    174.Borselli MG,Eng K and Ross RS et al.Undoped accumulation-mode Si/Si Ge quantum dots.Nanotechnology 2015;26:375202.
    175.Mills A,Zajac D and Gullans M et al.Shuttling a single charge across a onedimensional array of silicon quantum dots.ar Xiv:1809.03976.
    176.Rochette S,Rudolph M and Roy A-M et al.Single-electron-occupation metaloxide-semiconductor quantum dots formed from efficient poly-silicon gate layout.ar Xiv:1707.03895v1.
    177.Li Y,Li S-X and Gao F et al.Coupling a germanium hut wire hole quantum dot to a superconducting microwave resonator.Nano Lett 2018;18:2091-7.
    178.Rotta D,Sebastiano F and Charbon E et al.Quantum information density scaling and qubit operation time constraints of CMOS silicon-based quantum computer architectures.npj Quantum Inf 2017;3:26.
    179.Vandersypen LMK,Bluhm H and Clarke JS et al.Interfacing spin qubits in quantum dots and donors-hot,dense,and coherent.npj Quantum Inf 2017;3:34.
    180.Reilly DJ.Engineering the quantum-classical interface of solid-state qubits.npj Quantum Inf 2015;1:15011.
    181.Hornibrook JM,Colless JI and Conway Lamb ID et al.Cryogenic control architecture for large-scale quantum computing.Phys Rev Appl 2015;3:024010.
    182.Clapera P,Ray S and Jehl X et al.Design and cryogenic operation of a hybrid quantum-CMOS circuit.Phys Rev Appl 2015;4:044009.
    183.van Dijk JPG,Kawakami E and Schouten RN et al.The impact of classical control electronics on qubit fidelity.ar Xiv:1803.06176v1.
    184.Franke DP,Clarke JS and Vandersypen LMK et al.Rent’s rule and extensibility in quantum computing.ar Xiv:1806.02145v1.
    185.Helsen J,Steudtner M and Veldhorst M et al.Quantum error correction in crossbar architectures.Quantum Sci Technol 2018;3:035005.
    186.Preskill J.Quantum computing in the NISQ era and beyond.ar Xiv:1801.00862.
    187.Chen Z-Y,Zhou Q and Xue C et al.64-qubit quantum circuit simulation.Sci Bull 2018;63:964-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700