硅藻土基复合材料在能源与环境领域的应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Application of Diatomite-based Composites in the Field of Energy and Environment
  • 作者:姜德彬 ; 袁云松 ; 吴俊书 ; 杜玉成 ; 王金淑 ; 张育新
  • 英文作者:JIANG Debin;YUAN Yunsong;WU Junshu;DU Yucheng;WANG Jinshu;ZHANG Yuxin;State Key Laboratory of Mechanical Transmissions,College of Materials Science and Engineering,Chongqing University;School of Urban Construction and Environmental Engineering,Chongqing University;Key Laboratory of Advanced Functional Materials,School of Materials Science and Engineering,Beijing University of Technology;
  • 关键词:硅藻土 ; 超级电容 ; 重金属 ; 吸附 ; 催化
  • 英文关键词:diatomite;;energy storage;;heavy metal;;adsorption;;catalysis
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:重庆大学材料科学与工程学院机械传动国家重点实验室;重庆大学城市建设与环境工程学院;北京工业大学新型功能材料教育部重点实验室;
  • 出版日期:2019-05-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:中央高校基本科研业务费研究生创新创业项目(106112017CDJXSYY0001);; 国家自然科学基金面上项目(21576034)~~
  • 语种:中文;
  • 页:CLDB201909010
  • 页数:7
  • CN:09
  • ISSN:50-1078/TB
  • 分类号:59-65
摘要
相比于传统的纳米颗粒材料,无机有序多孔纳米材料具有大的比表面积、高的吸附容量和许多特殊性能,在吸附、分离、催化等领域得到广泛应用。硅藻土作为一种天然的矿物材料具有多级孔道结构,是一种优良的无机多孔材料。过去对硅藻土的开发与利用的方式较为粗犷,例如用于建筑材料、过滤填料等低附加值材料。近年来,由于硅藻土具有独特的纳米和微米形态天然多孔三维分层结构、高比表面积,以及良好的热稳定性和高性价比,其研究与利用逐渐成为微纳米技术领域的热点,在微纳米尺度引出一系列理论和技术问题,其研究成果也逐步应用到工业与民生领域。得益于自身天然多孔的三维分层结构,硅藻土具有较高的比表面积,因而有潜力成为储能器件的原材料。然而,硅藻土存在高电阻率等缺点,不利于能量转换和储存等应用。为此,研究者对硅藻土的优化开展了大量的工作。具体地说,一方面将具有电化学性质的材料负载于硅藻土表面,利用硅藻土表面的硅羟基与修饰材料进行价键匹配,使复合材料具有较高的导电特性;同时,借助硅藻土高的比表面积及多孔结构,可大幅提高硅藻土基复合材料的电化学性能。另一方面,将硅藻土完全转化为另一种高导电性材料,以进一步提高复合材料的导电性能。硅藻土基复合材料在储能方面的应用已经引起广泛关注,并显示出巨大的潜力和发展空间。三维多孔材料在环境领域也具有广阔的应用空间。表面修饰可赋予硅藻土三维多孔材料优异的性能。例如,采用硅藻土表面硅羟基与纳米金属氧化物通过氢键进行结合,可显著改变纳米金属氧化物的表面价键排布,从而影响材料的性能。现阶段国内外针对硅藻土基复合材料在环境领域的应用已经开展了大量的研究工作。主要通过表面化学修饰的手段在硅藻土表面可控沉积功能材料实现功能性复合材料的构筑。这种复合材料保持着硅藻土的孔道结构,其较高的比表面积为功能材料提供了大量的活性位点,可显著提升硅藻土复合材料的性能。硅藻土基复合纳米材料是近年来出现的一个新的研究领域,它在超级电容器储能、锂电池、重金属污染物吸附、降解、催化合成等诸多领域得到了研究及应用。根据近年来国内外在硅藻土材料方面的研究现状,本文介绍了使用硅藻基复合材料在能源及环境领域应用的新进展。
        Compared with traditional nanoparticle materials,inorganic nanocomposites with ordered and porous structure are superior in specific surface area and adsorption capacity,showing tremendous application potential in the field of adsorption,separation,catalysis and so forth. Among them,the diatomite are one of the most spectacular examples of natural inorganic ordered porous materials with a unique pattern of nano-sized features. In the past,diatomite were developed and utilized in an extensive pattern,and the major application for diatomite is restricted to building materials,filter fillers,etc. In recent years,the research and utilization of diatomite has gradually become a hot spot in the field of micro and nanotechnology,thanks to their unique shapes and ordered porous structures at the micro-and nanoscale,high specific surface area,favorable thermal stability and cost-effectiveness advantages. A series of theoretical and technical problems concerning diatomite are raised in micro-and nanoscale,and the related research results have already applied to industry and people's livelihood.It is not surprising that these promising natural materials with unique structures has been considered as candidate raw materials for energy conversion and storage devices. Nevertheless,diatomite have many limitations such as high resistivity,which are not favourable for energy conversion and storage and other applications. Accordingly,considerable efforts have been paid for optimization of diatomite. Specifically speaking,one approach is to load a particular material with satisfactory electrochemical properties on the surface of diatomite,and the silica hydroxyl group on the surface of diatomite can be used to match the valence bond with the modification material. Meanwhile,porous structure of diatomite with high specific surface area will contribute to greatly improve the electrochemical properties of diatomite based composites. Another approach is to transform diatomite into another kind of material with high conductivity. The application of diatomite-based composite materials in energy storage has attracted extensive attention and exhibited great potential.Three-dimensional porous materials have a wide range of applications in the environmental field. Surface modification can endow diatomite with excellent performance of the three-dimensional porous material. For instance,the arrangement of valence bonds on the surface of nano-metal oxides can be significantly varied by the combination of silicon hydroxyl groups on the surface of diatomite and the nano-metal oxides through hydrogen bonding,thereby affecting the properties of the materials. Besides,a great deal of work has been carried out on the research of diatomitebased composite materials in the environmental field at home and abroad. The functional composites are achieved by controllable deposition of functional materials on diatomite surface. This composite material maintaining the pore structure of diatomite and high specific surface area provides a large number of active sites for functional materials,and significantly improves the performance of diatomite-based composite materials.Diatomite-based composite materials are emerging research subjects,which have been studied and applied in many fields,including supercapacitors,lithium batteries,heavy metal pollutant adsorption,degradation and catalysis. According to the research status of diatomite-based composites both at home and abroad in recent years,the latest progress of application of novel diatomite-based composites in energy storage and pollutant adsorption,degradation and catalysis is demonstrated.
引文
1 Chen K,Li C,Shi L,et al.Nature Communication,2016,7,13440.
    2 Pan Z,Lerch S J,Xu L,et al.Scientific Reports,2014,4,6117.
    3 Zhang Z,Wang Z.The Journal of Organic Chemistry,2006,71(19),7485.
    4 Kang S M,Ryou M H,Choi J W,et al.Chemistry of Materials,2012,24(17),3481.
    5 Liu J,Kopold P,van Aken P A,et al.Angewandte Chemie-International Edition,2015,54(33),9632.
    6 Lisowska-Oleksiak A,Nowak A P,Wicikowska B.RSC Advances,2014,4(76),40439.
    7 Chen J,Lu X,Sun J,et al.Materials Letters,2015,152,256.
    8 Liang J W,Li X N,Zhu Y C,et al.Nano Research,2015,8(5),1497.
    9 Zhang Y X,Huang M,Li F,et al.Journal of Power Sources,2014,246,449.
    10 Li F,Xing Y,Huang M,et al.Journal of Materials Chemistry A,2015,3(15),7855.
    11 Wen Z Q,Li M,Li F,et al.Dalton Transations,2016,45(3),936.
    12 Guo X L,Kuang M,Li F,et al.Electrochimica Acta,2016,190,159.
    13 Zhang Y X,Li F,Huang M,et al.Materials Letters,2014,120,263.
    14 Jiang D B,Zhang B Y,Zheng T X,et al.Materials Letters,2018,215,23.
    15 Le Q J,Wang T,Tran D N H,et al.Journal of Materials Chemistry A,2017,5(22),10856.
    16 Etacheri V,Marom R,Elazari R,et al.Energy&Environmental Science,2011,4(9),3243.
    17 Bao Z,Weatherspoon M R,Shian S,et al.Nature,2007,446(7132),172.
    18 Shen L Y,Wang Z X,Chen L Q.RSC Advances,2014,4(29),15314.
    19 Campbell B,Ionescu R,Tolchin M,et al.Scientific Reports,2016,6,33050.
    20 Sheng G,Wang S,Hu J,et al.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2009,339(1-3),159.
    21 Caliskan N,Kul A R,Alkan S,et al.Journal of Hazardous Materials,2011,193,27.
    22 Sprynskyy M,Kovalchuk I,Buszewski B.Journal of Hazardous Materials,2010,181(1-3),700.
    23 Du Y,Wang L,Wang J,et al.Journal of Environmental Sciences,2015,29,71.
    24 Du Y,Zheng G,Wang J,et al.Microporous and Mesoporous Materials,2014,200,27.
    25 Du Y,Fan H,Wang L,et al.Journal of Materials Chemistry A,2013,1(26),7729.
    26 Zheng G W,Du Y C,Hou R Q,et al.Chinese Journal of Inorganic Chemistry,2015,31(5),930(in Chinese).郑广伟,杜玉成,侯瑞琴,等.无机化学学报,2015,31(5),930.
    27 Yuan P,Liu D,Fan M,et al.Journal of Hazardous Materials,2010,173(1-3),614.
    28 Yuan P,Liu D,Tan D Y,et al.Microporous and Mesoporous Materials,2013,170,9.
    29 Bao Z,Song M K,Davis S C,et al.Energy&Environmental Science,2011,4(10),3980.
    30 Jantschke A,Herrmann A K,Lesnyak V,et al.Chemistry-An Asian Journal,2012,7(1),85.
    31 Yu W,Yuan P,Liu D,et al.Journal of Hazardous Materials,2015,285,173.
    32 Yuan W,Yuan P,Liu D,et al.Chemical Engineering Journal,2016,294,333.
    33 Yuan W,Yuan P,Liu D,et al.Microporous and Mesoporous Materials,2015,206,184.
    34 Liu D,Gu J,Liu Q,et al.Advanced Materials,2014,26(8),1229.
    35 Thakkar M,Wu Z,Wei L,et al.Journal of Colloid and Interface Science,2015,450,239.
    36 Liu D,Yuan P,Tan D,et al.Journal of Colloid and Interface Science,2012,388(1),176.
    37 Liu D,Yuan W,Deng L,et al.Journal of Colloid and Interface Science,2014,424,22.
    38 Padmanabhan S K,Pal S,Ul Haq E,et al.Applied Catalysis A:General,2014,485,157.
    39 Sun Z,Bai C,Zheng S,et al.Applied Catalysis A:General,2013,458,103.
    40 Sun Q,Li H,Zheng S,et al.Applied Surface Science,2014,311,369.
    41 Zhang G,Sun Z,Duan Y,et al.Applied Surface Science,2017,412,105.
    42 Wang B,Zhang G,Leng X,et al.Journal of Hazardous Materials,2015,285,212.
    43 Chen Y,Liu K.Chemical Engineering Journal,2016,302,682.
    44 Chen Y,Liu K.Powder Technology,2016,303,176.
    45 Chen Y,Liu K.Powder Technology,2017,313,44.
    46 Chen Y,Liu K.Journal of Alloys and Compounds,2017,697,161.
    47 Wu Z,Zhu Z,Hao X,et al.Journal of Hazardous Materials,2018,347,48.
    48 Liu J,Antonietti M.Energy&Environmental Science,2013,6(5),1486.
    49 Feng F U,Jie Z,He X M,et al.Journal of Inorganic Materials,2016,31(8),881.
    50 Liu X,Yang C,Wang Y,et al.Chemical Engineering Journal,2014,243,192.
    51 Li B,Xu X,Zhu L,et al.Desalination,2010,254(1-3),90.
    52 Liang H,Zhou S,Chen Y,et al.Journal of the Taiwan Institute of Chemical Engineers,2015,49,105.
    53 Zhang Y X,Hao X D,Li F,et al.Industrial&Engineering Chemistry Research,2014,53(17),6966.
    54 He Y,Jiang B,Jiang Y,et al.Journal of Hazardous Materials,2018,344,230.
    55 Jiang D B,Liu X,Xu X,et al.Journal of Physics and Chemistry of Solids,2018,112,209.
    56 Son B H D,Mai V Q,Du D X,et al.Journal of Porous Materials,2016,24(3),601.
    57 Fischer C,Adam M,Mueller A C,et al.ACS Omega,2016,1(6),1253.
    58 Guo S,Shi L.Catalysis Today,2013,212,137.
    59 Jabbour K,El Hassan N,Davidson A,et al.Chemical Engineering Journal,2015,264,351.
    60 Yun Y,Li Z,Chen Y H,et al.Journal of Water Reuse and Desalination,2018,8(1),29.
    61 Sun Z,Yao G,Liu M,et al.Journal of the Taiwan Institute of Chemical Engineers,2017,71,501.
    62 Zha Y,Zhou Z,He H,et al.Water Science and Technology,2016,73(11),2815.
    63 Sun Z,Zheng S,Ayoko G A,et al.Journal of Hazardous Materials,2013,263,768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700