微细粒辉钼矿的浮选动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flotation kinetics of molybdenite fines
  • 作者:林清泉 ; 顾帼华 ; 陈雄 ; 邓莎 ; 许宝科 ; 李丽娟
  • 英文作者:LIN Qingquan;GU Guohua;CHEN Xiong;DENG Sha;XU Baoke;LI Lijuan;School of Minerals Processing and Bioengineering, Central South University;Jiangxi Copper Corporation Co.Ltd.;
  • 关键词:微细粒 ; 辉钼矿 ; 浮选动力学 ; 浮选速率常数 ; 疏水聚团
  • 英文关键词:fine particles;;molybdenite;;flotation kinetics;;flotation rate constant;;hydrophobic agglomeration
  • 中文刊名:ZNGD
  • 英文刊名:Journal of Central South University(Science and Technology)
  • 机构:中南大学资源加工与生物工程学院;江西铜业集团有限公司;
  • 出版日期:2018-07-26
  • 出版单位:中南大学学报(自然科学版)
  • 年:2018
  • 期:v.49;No.287
  • 基金:国家自然科学基金资助项目(51374249);; 中南大学中央高校基本科研业务费专项资金资助项目(2016zzts103);; 国家科技支撑计划项目(2015BAB12B02)~~
  • 语种:中文;
  • 页:ZNGD201807001
  • 页数:9
  • CN:07
  • ISSN:43-1426/N
  • 分类号:7-15
摘要
采用一级动力学模型研究粒度低于38μm的微细粒辉钼矿在不添加或者添加柴油时的浮选动力学。研究结果表明:不添加柴油时微细粒辉钼矿的浮选速率常数小,浮选回收率低;而在添加柴油的体系中,柴油用量的增加可以增大疏水团聚体的粒径,提高浮选速率常数,从而增大微细粒辉钼矿的浮选效率;矿浆pH对微细粒辉钼矿浮选速率的影响较大,在酸性和中性pH条件下,辉钼矿的浮选速率常数明显大于碱性条件下的速率常数;在柴油体系中,降低pH会促进辉钼矿颗粒的聚集行为,但聚集程度增加不大,从而引起辉钼矿浮选回收率增加不明显;适当增大搅拌转速也可以促进微细粒辉钼矿的聚团行为,增大团聚体的平均粒径,提高其浮选速率常数和浮选回收率;微细粒辉钼矿与柴油油滴之间相互作用力以疏水引力为主。
        The flotation kinetics of molybdenite fines(lower than 38 μm) with and without the presence of diesel oil was investigated by first-order kinetic equation. The results show that in the absence of diesel oil, the flotation rate constant and flotation recovery of fine molybdenite are low, while the addition of diesel oil can significantly improve the flotation efficiency of molybdenite by increasing the size of hydrophobic agglomerates and enhancing the flotation rate constant. The pulp p H also affects the flotation rate of fine molybdenite. Under the condition of acidic and neutral p H, flotation rate constant of molybdenite is significantly greater than that of alkaline condition. In the presence of diesel oil,lower p H can accelerate the aggregation behavior of molybdenite particles, while modest increase of aggregation degree can slightly increase the flotation recovery of molybdenite fines. A suitable increase in stirring speed is conducive to hydrophobic agglomeration of molybdenite, which increases the agglomerates size, flotation rate constant and flotation recovery. Moreover, the hydrophobic attractive force between diesel oil drop and molybdenite is the main driving force resulting in the collection effect.
引文
[1]LINCE J R,FRANTZ P.Anisotropic oxidation of Mo S2crystallites studied by angle-resolved X-ray photoelectron spectroscopy[J].Tribology Letters,2000,9(3/4):211-218.
    [2]ZANIN M,AMETOV I,GRANO S,et al.A study of mechanisms affecting molybdenite recovery in a bulk copper/molybdenum flotation circuit[J].International Journal of Mineral Processing,2009,93(3/4):256-266.
    [3]SONG Shaoxian,ZHANG Xinwang,YANG Bingqiao,et al.Flotation of molybdenite fines as hydrophobic agglomerates[J].Separation and Purification Technology,2012,98:451-455.
    [4]LUCAY F,CISTERNAS L A,GALVEZ E D,et al.Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation[J].Mineral&Metallurgical Processing,2015,32(4):203-208.
    [5]SIVAMOHAN R.The problem of recovering very fine particles in mineral processing:a review[J].International Journal of Mineral Processing,1990,28(3/4):247-288.
    [6]MIETTINEN T,RALSTON J,FORNASIERO D.The limits of fine particle flotation[J].Minerals Engineering,2010,28(5):420-437.
    [7]FU Jiangang,CHEN Kaida,WANG Hui,et al.Recovering molybdenite from ultrafine waste tailings by oil agglomerate flotation[J].Minerals Engineering,2012,39:133-139.
    [8]CHOI J,LEE E,CHOI S Q,et al.Arsenic removal from contaminated soils for recycling via oil agglomeration flotation[J].Chemical Engineering Journal,2016,285:207-217.
    [9]白丽梅,刘忠义,韩跃新,等.浮选动力学模型的应用与发展[J].矿产保护与利用,2016(4):55-63.BAI Limei,LIU Zhongyi,HAN Yuexin,et al.Application and development of flotation kinetics model[J].Conservation and Utilization of Mineral Resources,2016(4):55-63.
    [10]罗仙平,何丽萍,周晓文,等.浮选动力学研究进展[J].金属矿山,2008,382(4):71-75.LUO Xianping,HE Liping,ZHOU Xiaowen,et al.Progress in flotation kinetics research[J].Metal Mine,2008,382(4):71-75.
    [11]VINNETT L,ALVAREZ-SILVA M,JAQUES A,et al.Batch flotation kinetics:fractional calculus approach[J].Minerals Engineering,2015,77:167-171.
    [12]FICHERA M A,CHUDACER M W.Batch cell flotation models:a review[J].Minerals Engineering,1992,5(1):44-55.
    [13]王琪,冯雅丽,李浩然,等.石墨的浮选动力学模型及浮选行为研究[J].非金属矿,2016,39(3):11-13.WANG Qi,FENG Yali,LI Haoran,et al.Flotation dynamics models and flotation behaviors of graphite[J].Non-metallic Mines,2016,39(3):11-13.
    [14]王永田,田全志,张义,等.低阶煤浮选动力学过程研究[J].中国矿业大学学报,2016,45(2):398-404.WANG Yongtian,TIAN Quanzhi,ZHANG Yi,et al.Kinetic process of low-rank coal flotation[J].Journal of China University of Mining&Technology,2016,45(2):398-404.
    [15]ASGHAR A,AHMAD H,BEHNAM F.Investigating the first-order flotation kinetics models for Sarcheshmeh copper sulfide ore[J].International Journal of Mining Science and Technology,2015,25(5):849-854.
    [16]胡熙庚,黄和慰,毛钜凡.浮选理论与工艺[M].长沙:中南工业大学出版社,1991:96-102.HU Xigeng,HUANG Hewei,MAO Jufan.Theory and technology of flotation[M].Changsha:Central South University of Technology Press,1991:96-102.
    [17]印万忠,王东辉,马英强,等.微细粒矿物选择性聚团分选技术研究进展[C]//王运敏.中国矿业科技文汇(2015).北京:冶金工业出版社,2015:16-20.YIN Wanzhong,WANG Donghui,MA Yingqiang,et al.Progress on selective aggregation technology of fine mineral particles[C]//WANG Yunmin.Proceedings of China’s Mining Technology Conference(2015).Beijing:Metallurgical Industry Press,2015:16-20.
    [18]TABARES J O,ORTEGA I M,BAHENA J L R,et al.Surface properties and floatability of molybdenite[C]//Proceedings of2006 China-Mexico Workshop on Minerals Particle Technology.San Luis Potosi,Mexico,2006:115-124.
    [19]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993:82-87.QIU Guanzhou,HU Yuehua,WANG Dianzuo.Interactions between particles and flotation of fine particles[M].Changsha:Central South University of Technology Press,1993:82-87.
    [20]任俊,卢寿兹.亲水性及疏水性颗粒在水中的分散行为研究[J].中国粉体技术,1999,5(2):6-9.REN Jun,LU Shouci.Dispersion behaviors of hydrophilic and hydrophobic particles in water[J].China Powder Science and Technology,1999,5(2):6-9.
    [21]王晖,陈立,符剑刚,等.辉钼矿浮选体系中的界面热力学[J].中南大学学报(自然科学版),2007,38(5):893-899.WANG Hui,CHEN Li,FU Jiangang,et al.Interface thermodynamics of molybdenite floatation system[J].Journal of Central South University(Science and Technology),2007,38(5):893-899.
    [22]宋少先,卢寿兹.非极性油对水中微细粒矿物疏水絮凝强化作用的研究[J].有色金属,1992,44(3):29-35.SONG Shaoxian,LU Shouci.Intensifying action of non-polar oil on hydrophobic flocculation of fine mineral particles in aqueous solution[J].Nonferrous Metals,1992,44(3):29-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700