等离子体射流的流体力学模拟和输运系数计算
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrodynamic Simulation of Plasma Jet and Calculation of Transport Coefficient
  • 作者:李鸿鹏 ; 蔡世凯 ; 刘宇琦 ; 刘胜军
  • 英文作者:Li Hongpeng;Cai Shikai;Liu Yuqi;Liu Shengjun;Electrical Engineering College,Northeast Electric Power University;Baoding Power Supply Company,State Grids Hebei Electric Power Company;
  • 关键词:等离子体射流 ; 摩尔分布 ; 流速 ; 电离系数 ; 激发系数
  • 英文关键词:Plasma jet;;Molar distribution;;Flow rate;;Ionization rate coefficient;;Excitation rate coefficient
  • 中文刊名:DBDL
  • 英文刊名:Journal of Northeast Electric Power University
  • 机构:东北电力大学电气工程学院;国网河北省电力公司保定供电分公司;
  • 出版日期:2019-06-15
  • 出版单位:东北电力大学学报
  • 年:2019
  • 期:v.39;No.147
  • 基金:国家自然科学基金资助项目(51307020);; 河北省电力公司科技项目(SGHEBDOOYJJS1800491)
  • 语种:中文;
  • 页:DBDL201903004
  • 页数:8
  • CN:03
  • ISSN:22-1373/TM
  • 分类号:19-26
摘要
对等离子体射流的流体力学进行了力学模拟,分析了场强与电极厚度及极间距离的关系;分析和探讨了在不同初始速度下,氦气流速、摩尔分布在轴向和径向的变化关系;分析和探讨了减弱场强对电离系数、He~*的激发系数和N_2(C~3Π_u)的激发系数的影响.实验结果表明:场强的最大值与最小值都出现在阳极附近,为了增强阳极附近电场,可在一定程度上减小电极板的厚度d和减小两电极板之间的距离D_2;在轴向上,随着z的增大,V_(HE)逐渐衰减,氦气的摩尔分布逐渐降低;在径向上,随着r的增大V_(HE)逐渐衰减,氦气的摩尔分布逐渐降低;随着电场减小,电离系数、He~*的激发系数和N_2(C~3Π_u)的激发系数三者起初变化不太大,当电场继续减小时,三个系数下降的幅度变得越来越大,越来越明显.
        The hydrodynamics of the plasma jet are simulated,the relationship between the field strength and the electrode thickness and the distance between the electrodes is analyzed.The changes of the helium flow rate and the molar distribution in the axial and radial directions at different initial velocities are analyzed and discussed.The influence of the weakened field strength on the ionization rate coefficient,the excitation rate coefficient of He~* and the excitation rate coefficient of N_2(C~3Π_u) are analyzed and discussed.The experimental results show that the maximum and minimum values of the field strength appear in the vicinity of the anode.In order to enhance the electric field near the anode,the thickness d of the electrode plates can be reduced to a certain extent and the distance D_2 between the two electrode plates can be reduced.In the axial direction,with the increase of z,the VHE gradually decays and the molar distribution of helium decreases gradually.In the radial direction,as the r increases,the VHE gradually decays and the molar distribution of helium decreases.With the decrease of the electric field,the ionization rate coefficient,the excitation rate coefficient of He~* and the excitation rate coefficient of N_2(C~3Π_u) do not change much at first.When the electric field continues to decrease,the amplitude of the three coefficients decreases getting bigger and bigger,more and more obvious.
引文
[1] S.E.Babayan,J.Y.Jeong,V.J.Tu,et al.Deposition of silicone dioxide films with an atmospheric pressure plasma jet[J].Plasma Sources Science and Technology,1998,7(3):286-288.
    [2] 李威,王志新,史莉.纳秒脉冲火花放电等离子体发射光谱特性研究 [J].电工电能新技术,2016,35(11):29-36.
    [3] A.Schütze,J.Y.Jeong,S.E.Babayan,et al.The atmospheric pressure plasma jet:a review and comparison to other plasma sources[J].IEEE Transactions on Plasma Science,1998,26(6):1685-1694.
    [4] J.S.Sousa,K.Niemi,L.J.Cox,et al.Cold atmospheric pressure jets as sources of singlet delta oxygen for biomedical applications[J].Journal of Applied Physics,2011,109(12):123302.
    [5] 卢新培.等离子体射流及其医学应用 [J].高电压技术,2011,37(6):1416-1425.
    [6] 熊紫兰,卢新培,鲜于斌,等.大气压低温等离子体射流及其生物医学应用 [J].科技导报,2010,28(15):97-105.
    [7] K.G.Doherty,J.S.Oh,P.Unsworth,et al.Polystyrene surface modification for localized cell culture using a capillary dielectric barrier discharge atmospheric pressure microplasma jet[J].Plasma Processed and Polymers,2013,10(11):978-989.
    [8] 张梅,张文静,杨雪霞,等.常压低温等离子体灭菌消毒技术 [J].中国医学物理学杂志,2006,23(6):427-431.
    [9] 郑超.低温等离子体和脉冲电场灭菌技术[D].杭州:浙江大学,2013.
    [10] 陈杰.吸附催化协同低温等离子体降解有机废气[D].杭州:.浙江大学,2011.
    [11] 谢瑞.等离子体放电技术在环境工程中的应用[J].电气应用,2012,31(22):83-85.
    [12] 贾思思.DNA折纸术模板构建金属纳米图案及其表面等离子体性质的研究[D].上海:中国科学院研究生院(上海应用物理研究所),2014.
    [13] 陈泳屹,佟存柱,秦莉,等.表面等离子体激元纳米激光器技术及应用研究进展[J].中国光学,2012,5(5):453-463.
    [14] 郑灵.飞行器等离子体鞘套对电磁波传输特性的影响研究[D].成都:电子科技大学,2013.
    [15] 朱冰.导弹雷达舱等离子体隐身原理研究[D].西安:西北工业大学,2006.
    [16] 李毅.雷达隐身目标电磁散射计算与实验研究[D].长沙:国防科学技术大学,2007.
    [17] 陈桂涛,刘春强,孙强,等.用于网格状金属切割的等离子切割电源控制策略研究[J].电工电能新技术,2015,34(8):19-24.
    [18] 卢新培,严萍,任春生,等.大气压脉冲放电等离子体的研究现状与展望[J].中国科学:物理学力学天文学,2011,41(7):801-815.
    [19] 胡上茂,姚学玲,陈景亮.短间隙磁控放电离子电流特性及影响因素研究 [J].电工电能新技术,2015,34(8):44-50.
    [20] 李锰,汪沨,王湘汉.不同电极结构中SF_6/N_2混合气体正向流注电晕放电特性[J].电工电能新技术,2015,34(3):24-28+48.
    [21] 钟久明,刘树林,王玉婷,等.短间隙的击穿及其短路放电特性研究[J].电工电能新技术,2016,35(4):30-34.
    [22] 赵珩,张嘉辉,单良,等.高压电晕放电后孔洞与微米功能电介质材料的表面电荷动态衰减特性分析[J].东北电力大学学报,2013,33(5):36-38.
    [23] 侯世英,罗书豪,孙韬,等.大气压放电氦气等离子体射流特性[J].高电压技术,2014,40(4):1207-1213.
    [24] 侯世英,罗书豪,刘坤,等.双环电极大气压氦气等离子体射流的特性及其影响因素[J].高电压技术,2013,39(7):1569-1576.
    [25] 林德锋,罗书豪,侯世英,等.大气压放电等离子体射流研究进展[J].中国高新技术企业,2013(34):9-13.
    [26] 刘富成,王德真.大气压氦气冷等离子体射流放电一维数值模拟[J].高电压技术,2012,38(7):1749-1757.
    [27] 张冠军,詹江杨,邵先军,等.大气压氩气等离子体射流长度的影响因素[J].高电压技术,2011,37(6):1432-1438.
    [28] K.Urabe,T.Morita,K.Tachibana,et al.Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements[J].Journal of Physics D:Applied Physics,2010,43(9):095201.
    [29] 何永乐,高俊,左都罗,等.大气压He-Ar射频容性放电Ar亚稳态粒子数密度[J].强激光与粒子束,2017,29(5):9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700