CRISPR/Cas9系统在水稻中的发展和利用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Development and utilization of CRISPR/Cas9 system in rice
  • 作者:沈明晨 ; 薛超 ; 乔中英 ; 龚志云
  • 英文作者:Shen Mingcheng;
  • 关键词:水稻 ; CRISPR/Cas9 ; 基因组编辑 ; 作物改良
  • 中文刊名:JSNY
  • 英文刊名:Jiangsu Agricultural Sciences
  • 机构:江苏省作物遗传生理重点实验室/植物功能基因组学教育部重点实验室/江苏省作物基因组学和分子育种重点实验室/扬州大学农学院;苏州市农业科学院;
  • 出版日期:2019-05-28 15:38
  • 出版单位:江苏农业科学
  • 年:2019
  • 期:v.47
  • 基金:国家自然科学基金(编号:31871232);; 江苏省农业科技自主创新资金[编号:CX(18)2014];; 苏州市农业科学院科研基金[编号:KJ(18)301]
  • 语种:中文;
  • 页:JSNY201910002
  • 页数:6
  • CN:10
  • ISSN:32-1214/S
  • 分类号:13-18
摘要
基因组学的快速发展和多种基因组编辑技术的出现,对植物科学以及农业领域中的基因功能研究和遗传改良产生了巨大影响。其中,CRISPR/Cas9系统介导的基因组编辑技术能够快速编辑各种生物体中的基因组,以其简单稳定高效等优点,成为目前最先进且被广泛运用的系统。水稻是我国最重要的粮食作物之一,其遗传资源丰富且基因组小,适合用于基因组编辑技术的研究。讨论水稻改良的基因组编辑策略,重点介绍CRISPR/Cas9系统在水稻抗病性、抗逆性、杂种优势等方面的应用和进展,强调CRISPR/Cas9在水稻改良中的主要挑战和发展意义。
        
引文
[1]Jasin M,Haber J E.The democratization of gene editing:insights from site-specific cleavage and double-strand break repair[J].DNArepair,2016,44:6-16.
    [2]Milovanovic V,Smutka L.Asian countries in the global rice market[J].Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis,2017,65(2):679-688.
    [3]Miglani G S.Genome editing in crop improvement:present scenario and future prospects[J].Journal of Crop Improvement,2017,31(4):453-559.
    [4]Belhaj K,Chaparrogarcia A,Kamoun S,et al.Editing plant genomes with CRISPR/Cas9[J].Current Opinion in Biotechnology,2015,32:76-84.
    [5]Weeks D P,Spalding M H,Yang B.Use of designer nucleases for targeted gene and genome editing in plants[J].Plant Biotechnology Journal,2016,14(2):483-495.
    [6]Marraffini L A,Sontheimer E J.CRISPR interference:RNA-directed adaptive immunity in bacteria and archaea[J].Nature Reviews Genetics,2010,11(3):181-190.
    [7]Deltcheva E,Chylinski K,Sharma C M,et al.CRISPR RNAmaturation by trans-encoded small RNA and host factor RNaseⅢ[J].Nature,2011,471(7340):602-607.
    [8]Jinek M,Chylinski K,Fonfara I,et al.A programmable dualRNA-guided DNA endonuclease in adaptive bacterial immunity[J].Science,2012,337(6096):816-821.
    [9]Komor A C,Badran A H,Liu D R.CRISPR-based technologies for the manipulation of eukaryotic genomes[J].Cell,2017,168(1/2):20-36.
    [10]Barrangou R,Fremaux C,Deveau H,et al.CRISPR provides acquired resistance against viruses in prokaryotes[J].Science,2007,315(5819):1709-1712.
    [11]Marraffini L A,Sontheimer E J.CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J].Science,2008,322(5909):1843-1845.
    [12]Qi L S,Larson M H,Gilbert L A,et al.Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J].Cell,2013,152(5):1173-1183.
    [13]Gasiunas G,Barrangou R,Horvath P,et al.Cas9-crRNAribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(39):2579-2586.
    [14]Jiang F,Taylor D W,Chen J S,et al.Structures of a CRISPR-Cas9R-loop complex primed for DNA cleavage[J].Science,2016,351(6275):867-871.
    [15]Sternberg S H,La France B,Kaplan M,et al.Conformational control of DNA target cleavage by CRISPR-Cas9[J].Nature,2015,527(7576):110-113.
    [16]Wright A V,Nunez J K,Doudna J A.Biology and applications of CRISPR systems:harnessing nature’s toolbox for genome engineering[J].Cell,2016,164(1/2):29-44.
    [17]Shan Q W,Wang Y P,Li J,et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J].Nature Biotechnology,2013,31(8):686-688.
    [18]Ma X L,Zhang Q Y,Zhu Q L,et al.A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J].Molecular Plant,2015,8(8):1274-1284.
    [19]Zhang Z J,Mao Y F,Ha S,et al.A multiplex CRISPR/Cas9platform for fast and efficient editing of multiple genes in Arabidopsis[J].Plant Cell Reports,2016,35(7):1519-1533.
    [20]Xie K,Minkenberg B,Yang Y.Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(11):3570-3575.
    [21]Cong L,Ran F A,Cox D,et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819-823.
    [22]Mali P,Yang L,Esvelt K M,et al.RNA-guided human genome engineering via Cas9[J].Science,2013,339(6121):823-826.
    [23]Singh V,Braddick D,Dhar P K.Exploring the potential of genome editing CRISPR-Cas9 technology[J].Gene,2017,599:1-18.
    [24]Georges F,Ray H.Genome editing of crops:a renewed opportunity for food security[J].GM Crops&Food,2017,8(1):1-12.
    [25]Jiang W Z,Zhou H B,Bi H H,et al.Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis,tobacco,sorghum and rice[J].Nucleic Acids Research,2013,41(20):e188.
    [26]Xu R F,Li H,Qin R Y,et al.Generation of inheritable and“transgene clean”targeted genome-modified rice in later generations using the CRISPR/Cas9 system[J].Scientific Reports,2015,5:11491.
    [27]Zhang H,Zhang J S,Wei P L,et al.The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J].Plant Biotechnology Journal,2014,12(6):797-807.
    [28]Zhou H,Liu B,Weeks D P,et al.Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J].Nucleic Acids Research,2014,42(17):10903-10914.
    [29]Jia H G,Wang N.Targeted genome editing of sweet orange using Cas9/sgRNA[J].PLo S One,2014,9(4):e93806.
    [30]Liang Z,Zhang K,Chen K L,et al.Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J].J Genet Genomics,2013,41(2):63-68.
    [31]Fan C,Walling J G,Zhang J,et al.Conservation and purifying selection of transcribed genes located in a rice centromere[J].The Plant Cell,2011,23(8):2821-2830.
    [32]Jacobs T B,La Fayette P R,Schmitz R J,et al.Targeted genome modifications in soybean with CRISPR/Cas9[J].BMCBiotechnology,2015,15(1):1-10.
    [33]Brooks C,Nekrasov V,Lippman Z B,et al.Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system[J].Plant Physiology,2014,166(3):1292-1297.
    [34]Wang F,Wang C L,Liu P Q,et al.Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene Os ERF922[J].PLo S One,2016,11(4):e0154027.
    [35]王芳权,范方军,李文奇,等.利用CRISPR/Cas9技术敲除水稻Pi21基因的效率分析[J].中国水稻科学,2016,30(5):469-478.
    [36]杨海河,毕冬玲,张玉,等.基于CRISPR/Cas9技术的水稻Pi21基因编辑材料的创制及稻瘟病抗性鉴定[J].分子植物育种,2017(11):4451-4465.
    [37]Cheong Y H,Sung S J,Kim B G,et al.Constitutive overexpression of the calcium sensor CBL5 confers osmotic or drought stress tolerance in Arabidopsis[J].Molecules and Cells,2010,29(2):159-165.
    [38]陈鹏程.水稻Os CBL5在植物耐盐信号传导中的作用研究[D].金华:浙江师范大学,2015.
    [39]董艳敏.水稻Os PDR1定向突变及其在耐盐中的功能研究[D].南京:南京农业大学,2016.
    [40]黄小贞,曾晓芳,李建容,等.基于CRISPR/Cas9技术的水稻转录因子tify1a和tify1b突变体的创建与分析[J].农业生物技术学报,2017,25(6):1003-1012.
    [41]Li J,Meng X B,Zong Y,et al.Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J].Nature plants,2016,2:16139.
    [42]Sun Y,Zhang X,Wu C Y,et al.Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J].Molecular Plant,2016,9(4):628-631.
    [43]Su N,Hu M L,Wu D X,et al.Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production[J].Plant Physiol,2012,159(1):227-238.
    [44]Cheng S H,Zhuang J Y,Fan Y Y,et al.Progress in research and development on hybrid rice:a super-domesticate in China[J].Annals of Botany,2007,100(5):959-966.
    [45]Chen L,Liu Y G.Male sterility and fertility restoration in crops[J].Annual Review of Plant Biology,2014,65(1):579-606.
    [46]Zhou H,He M,Li J,et al.Development of commercial thermosensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system[J].Scientific Reports,2016,6:37395.
    [47]Khanday I,Skinner D,Yang B,et al.A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds[J].Nature,2019,565:91-95.
    [48]Wang C,Liu Q,Shen Y,et al.Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes[J].Nature Biotechnology,2019,37(3):283.
    [49]Wang Y H,Li J Y.Molecular basis of plant architecture[J].Annual Review of Plant Biology,2008,59(1):253-279.
    [50]Xing Y Z,Zhang Q E.Genetic and molecular bases of rice yield[J].Annual Review of Plant Biology,2010,61:421-442.
    [51]Minakuchi K,Kameoka H,Yasuno N,et al.FINE CULM1(FC1)works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J].Plant&Cell Physiology,2010,51(7):1127-1135.
    [52]Miura K,Ikeda M,Matsubara A,et al.Os SPL14 promotes panicle branching and higher grain productivity in rice[J].Nature Genetics,2010,42(6):545-549.
    [53]Jiao Y Q,Wang Y H,Xue D W,et al.Regulation of Os SPL14 by OsmiR156 defines ideal plant architecture in rice[J].Nature Genetics,2010,42(6):541-U536.
    [54]Li S Y,Zhao B R,Yuan D Y,et al.Rice zinc finger protein DSTenhances grain production through controlling Gn1a/Os CKX2expression[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(8):3167-3172.
    [55]Fan C C,Xing Y Z,Mao H L,et al.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J].Theoretical and Applied Genetics,2006,112(6):1164-1171.
    [56]Mao H L,Sun S Y,Yao J L,et al.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(45):19579-19584.
    [57]Shomura A,Izawa T,Ebana K,et al.Deletion in a gene associated with grain size increased yields during rice domestication[J].Nature Genetics,2008,40(8):1023-1028.
    [58]Song X J,Kuroha T,Ayano M,et al.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight,yield,and plant biomass in rice[J].Proceedings of the National Academy of Sciences of the United States of America,2015,112(1):76-81.
    [59]Wang S K,Li S,Liu Q,et al.The Os SPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J].Nature Genetics,2015,47(8):949-954.
    [60]Wang S K,Wu K,Yuan Q B,et al.Control of grain size,shape and quality by Os SPL16 in rice[J].Nature Genetics,2012,44(8):950-954.
    [61]Zhang X J,Wang J F,Huang J,et al.Rare allele of Os PPKL1associated with grain length causes extra-large grain and a significant yield increase in rice[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(52):21534-21539.
    [62]Huang X Z,Qian Q,Liu Z B,et al.Natural variation at the DEP1locus enhances grain yield in rice[J].Nature Genetics,2009,41(4):494-497.
    [63]Li M,Li X X,Zhou Z J,et al.Reassessment of the four yieldrelated genes Gn1a,DEP1,GS3,and IPA1 in rice using a CRISPR/Cas9 system[J].Frontiers in Plant Science,2016,7:377.
    [64]Gilbert L A,Horlbeck M A,Adamson B,et al.Genome-scale CRISPR-mediated control of gene repression and activation[J].Cell,2014,159(3):647-661.
    [65]Shalem O,Sanjana N E,Hartenian E,et al.Genome-scale CRISPR-Cas9 knockout screening in human cells[J].Science,2014,343(6166):84-87.
    [66]Chen B,Gilbert L A,Cimini B A,et al.Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system[J].Cell,2013,155(7):1479-1491.
    [67]Hilton I B,D’Ippolito A M,Vockley C M,et al.Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers[J].Nature Biotechnology,2015,33(5):510-517.
    [68]Mc Kenna A,Findlay G M,Gagnon J A,et al.Whole-organism lineage tracing by combinatorial and cumulative genome editing[J].Science,2016,353(6298):aaf7907.
    [69]Hsu P D,Lander E S,Zhang F.Development and applications of CRISPR-Cas9 for genome engineering[J].Cell,2014,157(6):1262-1278.
    [70]Hu X X,Wang C,Fu Y P,et al.Expanding the range of CRISPR/Cas9 genome editing in rice[J].Molecular Plant,2016,9(6):943-945.
    [71]Hu X X,Meng X B,Liu Q,et al.Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice[J].Plant Biotechnology Journal,2018,16(1):292-297.
    [72]Kaya H,Mikami M,Endo A,et al.Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9[J].Scientific Reports,2016,6:26871.
    [73]Waltz E.CRISPR-edited crops free to enter market,skip regulation[J].Nature Biotechnology,2016,34(6):582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700