超细晶碳化钨-钴复合粉短流程制备工艺研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on Short Process Preparation of Ultrafine Grained WC-Co Composite Powder
  • 作者:易健宏 ; 郭圣达 ; 鲍瑞 ; 张家敏 ; 羊建高
  • 英文作者:Yi Jianhong;Guo Shengda;Bao Rui;Zhang Jiamin;Yang Jiangao;School of Materials Science and Engineering, Kunming University of Science and Technology;Institute of Engineering Research, Jiangxi University of Science and Technology;
  • 关键词:超细晶WC-Co复合粉 ; 短流程工艺 ; 参数 ; 形貌 ; 粒度分布
  • 英文关键词:ultrafine grained WC-Co composite powder;;short process;;parameters;;morphology;;particle size distribution
  • 中文刊名:YZHJ
  • 英文刊名:Cemented Carbide
  • 机构:昆明理工大学材料科学与工程学院;江西理工大学工程研究院;
  • 出版日期:2018-10-15
  • 出版单位:硬质合金
  • 年:2018
  • 期:v.35;No.157
  • 基金:国家自然科学基金(51664023);; 江西省自然科学基金(20181BBE58001);; 云南省自然科学基金(2015FB127)
  • 语种:中文;
  • 页:YZHJ201805001
  • 页数:10
  • CN:05
  • ISSN:43-1107/TF
  • 分类号:8-17
摘要
以偏钨酸铵、醋酸钴及葡萄糖为原料,采用短流程工艺,通过喷雾转化法制备出含W、Co等元素的前驱体粉末、煅烧制备W、Co的氧化粉、最后以低温连续还原碳化法制备出WC晶粒尺寸约为260 nm的WC-Co复合粉。研究了短流程工艺3个关键步骤的参数变化对粉末形貌、粒径、氧含量、总碳和化合碳含量等特征的影响。结果表明,当溶液浓度为60%、进料速度为2 000 mL/min、离心转速为12 000 r/min时,制备的前驱体粉末粒度分布均匀,相互粘结的现象较少。温度为550℃、保温时间20 min时煅烧前驱体制备出的氧化物粉末粒度较均匀。当低温连续还原碳化温度为900℃、氢气流量为1.3 m3/h、保温时间为60 min时,可获得WC晶粒细小均匀、总碳和化合碳较为一致且接近于理论碳含量的WC-Co复合粉。
        Using ammonium metatungstate, cobalt acetate and glucose as raw materials, the precursor powders containing W and Co were prepared by spray conversion method, the oxide powders of W and Co were prepared by calcination, and the WC-Co composite powders with average grain size of 260 nm were prepared by low temperature continuous reduction carbonization process. The effects of parameters of the three key steps on the morphology, particle size,oxygen content, total carbon and combined carbon contents of the powder were investigated. The results show that the particle size distribution of the precursor powders is uniform and the powders bond less with each other when the concentration of the solution is 60%, the feed rate is 2 000 mL/min, and the centrifugal speed is 12 000 r/min. The particle size of oxide powders prepared by calcining precursor powders is uniform when the temperature is 550 ℃ and the holding time is 20 min. In addition, WC-Co composite powders with fine and uniform grain size could be obtained when the carbonization temperature is 900 ℃, hydrogen flow rate is 1.3 m3/h and holding time is 60 min. The total carbon and the combined carbon of composite powders are almost the same and close to the theoretical carbon content.
引文
[1]Guo S D, Bao R, Yang J G, Chen H, Yi J H. Effect of Mo and Y2O3additions on the microstructure and properties of fine WC-Co cemented carbides fabricated by spark plasma sintering[J]. 2017, 69:1-10.
    [2]龙坚战.烧结温度和时间对WC-24%Co硬质合金的WC晶粒形貌影响[J].硬质合金,2017,34(6):370-377.Long J Z. Effects of sintering temperature and time on WC morphology of WC-24%Co cemented carbide[J]. Cemented Carbide, 2017, 34(6):370-377.
    [3]Pignie C, Gee M G, Nunn J W, et al. Simulation of abrasion to WC/Co hardmetals using a micro-tribology test system[J]. Wear, 2013, 302:1050-1057.
    [4]廖江雄,徐纯芳,聂娅. WC-Co合金中晶粒形貌的演变机制及其对合金性能的影响[J].硬质合金,2018,35(1):63-68.Liao J X, Xu C F, Nie Y. Evolution mechanism of grain morphology in WC-Co carbide and its effect on properties[J]. Cemented Carbide,2018, 35(1):63-68.
    [5]B Roebuck, E G Bennett. Hardmetal toughness tests:Vamas interlaboratory exercise[M]. Teddington:National Physical Laboratory, 2005:1-38.
    [6]Xie H, Liu Y, Ye J W, et al. Effect of(Cr0.8V0.2)2(C,N)addition on microstructure and mechanical properties of WC-8%Co cemented carbides[J]. International Journal of Refractory Metals and Hard Materials,2014, 47:145-149
    [7]Aqeeli N A. Characterization of nano-cemented carbide Co-doped with vanadium and chromium carbides[J]. Powder Technology, 2015,273:47-53.
    [8]Raihanuzzaman R M, Xie Z H, Hong S J, et al.. Powder refinement,consolidation and mechanical properties of cemented carbides-An overview[J]. Powder Technology, 2014, 261:1-13.
    [9]Gao Y, Song X Y, Liu X M, et al. On the formation of WC1-Xin nanocrystalline cemented carbides[J]. Scripta Materialia, 2013, 68:108-110.
    [10]Fang Z Z, Wang X, Ryu T, et al. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review[J].International Journal of Refractory Metals and Hard Materials, 2009, 27:288-299.
    [11]Qu X Q, Xiao D H, Shen T T, et al. Characterization and preparation of ultra-fine grained WC-Co alloys with minor La-additions[J].International Journal of Refractory Metals and Hard Materials, 2012, 31:266-273.
    [12]Guo S D, Yu F, Zhou Y, Yang J G, et al. Investigation on reduction and carbonization process of WC-Co composite powder obtained by in situ synthesis[J]. Journal of Alloys and Compounds, 2019, 775:1086-1093.
    [13]Mandel K, Krüger L, Schimpf J. Particle properties of submicronsized WC-12%Co processed by planetary ball milling[J]. International Journal of Refractory Metals and Hard Materials, 2014, 42:200-204.
    [14]Guo S D, Shen T, Bao R, et al. Synthesis and characterization of WC-6%Co nanocrystalline composite powder[J]. Rare Metal Materials and Engineering, 2018, 47(7):1986-1992.
    [15]Guo S D, Bao R, Yang P, et al. Morphology and carbon content of WC-6%Co nanosized composite powders prepared using glucose as carbon source[J]. Transactions of Nonferrous Metals Society of China, 2018,28:722-728.
    [16]Xiong Z, Shao G Q, Shi X L, et al. Ultrafine hardmetals prepared by WC-10%Co composite powder[J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(3):242-250.
    [17]Shi X L, Shao G Q, Duan X L, et al. Mechanical properties, phases and microstructure of ultrafine hardmetals prepared by WC-6.29%Co nanocrystalline composite powder[J]. Materials Science and Engineering:A, 2005, 392(1):335-339.
    [18]Shi X L, Shao G Q, Duan X L, et al. Characterizations of WC-10%Co nanocomposite powders and subsequently sinterhip sintered cemented carbide[J]. Materials Characterization, 2006, 57(4):358-370.
    [19]Lin H, Tao B W, Xiong J, et al. Synthesis and characterization of WC-VC-Co nanocomposite powders through thermal-processing of a core-shell precursor[J]. Ceramics International, 2013, 39(8):9671-9675.
    [20]徐涛. WC/Co纳米复合粉质量特性的研究[J].硬质合金,2011,28(4):219-227.Xu Tao. Research on Quality Characteristics of Nanophase WC/Co Composite Powder[J]. Cemented Carbide, 2011, 28(4):219-227.
    [21]张璐.纳米WC/Co复合粉产业化技术研究[J].硬质合金,2016,33(1):19-23.Zhang Lu. Research on industrial preparation technology of nano WC/Co composite powder[J]. Cemented Carbide, 2011, 28(4):219-227.
    [22]郭圣达,羊建高,吕健,朱二涛,陈颢,张雪辉.喷雾转化法纳米WC-6%Co复合粉形貌研究[J].稀有金属,2015,39(1):43-48.Guo S D, Yang J G, Lv J, et al. Morphology of nanophase WC-6%Co composite powder prepared by spray conversion method[J]. Chinese Journal of Rare Metals, 2015, 39(1):43-48.
    [23]Luo P, Nie T G. Preparing hydroxyapatite powders with controlled morphology[J]. Biomaterials, 1996, 17(20):1959-1964.
    [24]郭圣达,羊建高,朱二涛,陈颢,吕健. WC-Co复合粉形貌遗传特性及粒度分布研究[J].稀有金属材料与工程,2016,45(5):1330-1334.Guo S D, Yang J G, Zhu E T, et al. Genetic characteristics of morphology and particle size distribution of WC-Co composite powder[J]. Rare Metal Materials and Engineering, 2016, 45(5):1330-1334.
    [25]羊建高,吕健,朱二涛,陈颢,郭圣达.连续还原碳化法制备纳米WC-Co复合粉研究[J].有色金属科学与工程,2013,4(5):23-27.Yang J G, Lv J, Zhu E T, et al. Preparation of nanophase WC-Co composite powder by continuing reduction carbonization[J]. Nonferrous Metals Science and Engineering, 2013, 4(5):23-27.
    [26]朱二涛.纳米WC-6%Co复合粉碳量控制研究[D].赣州:江西理工大学,2014:1-74.Zhu E T. Study on carbon content control and mechanism of nanocrystalline WC-6%Co composite powder[J]. Ganzhou:Jiangxi University of Science and Technology, 2014:1-74.
    [27]Yang Q M, Yang J G, Yang H L, et al. Synthesis of ultrafine WCCo composite powders under hydrogen atmosphere with in situ carbon via a one-step reduction-carbonization process[J]. International Journal of Applied Ceramic Technology, 2017, 14(2):220-227.
    [28]Gillet M, Delamare R, Gillet E. Growth, structure and electrical properties of tungsten oxide nanorods[J]. The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics, 2005, 34(1):291-294.
    [29]吴桐,唐建成,叶楠,卓海鸥,薛滢妤,周旭升.碳辅助氢还原制备纳米钨粉的工艺及机理[J].中国有色金属学报,2013,26(5):1027-1033.Wu T, Tang J C, Ye N, et al. Preparation technology and mechanism of tungsten nano-powders by carbon assisting hydrogen reduction[J]. The Chinese Journal of Nonferrous Metals, 2013, 26(5):1027-1033.
    [30]Guo S D, Yang J G, Chen H, et al. Preparation and electrocatalytic activity of nanophase WC-Co composite powder and WC powder with spherical shell structure[J]. Materials Science Forum. 2015, 816:694-698.
    [31]Perezhogin I A, Kulnitskiy B A, Grishtaeva A E. Transformations in WC lattice and polytype formation in the process of sintering of W/C60mixture[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48:115-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700