CO_2水合物在管道中的生成及堵塞特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CO_2 hydrate formation in pipeline and its plugging characteristics
  • 作者:周诗岽 ; 陈小康 ; 边慧 ; 何骋远 ; 王树立 ; 吕晓方
  • 英文作者:ZHOU Shidong;CHEN Xiaokang;BIAN Hui;HE Chengyuan;WANG Shuli;Lü Xiaofang;Key Laboratory of Oil & Gas Storage and Transportation Technology,School of Petroleum Engineering,Changzhou University;
  • 关键词:CO_2水合物 ; 堵塞 ; 压降 ; 体积分数 ; 持液量
  • 英文关键词:CO_2 hydrate;;plugging;;pressure drop;;volume fraction;;liquid loading
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:常州大学石油工程学院油气储运技术省重点实验室;
  • 出版日期:2018-11-05
  • 出版单位:化工进展
  • 年:2018
  • 期:v.37;No.326
  • 基金:中国石油科技创新基金(2016D-5007-0607);; 国家自然科学基金(51574045);; 常州市科技计划(CJ20160041)项目
  • 语种:中文;
  • 页:HGJZ201811016
  • 页数:7
  • CN:11
  • ISSN:11-1954/TQ
  • 分类号:135-141
摘要
为明确CO_2水合物在管道中的流动及堵塞特性,通过高压可视水合物环路研究了不同持液量下的水合物生成及堵塞特性,研究结果表明:水合物生成诱导时间随着持液量的增大出现非线性变化,呈V形,先减小后增大;管道持液量越大,水合物生成量越少,水合物发生堵塞时的临界体积分数降低,如在持液率86.6%下,堵塞时水合物体积分数为4.32%,持液率为66.7%时,堵塞时水合物体积分数为7.45%。通过可视管路发现当CO_2水合物大量生成后,管道中压降将突然增大,颗粒之间快速聚集生长,流速迅速降低,CO_2水合物快速充满管道使管道发生堵塞,水合物颗粒不断生长及在聚集层处的聚集导致流动阻力的增加是其产生堵塞的根本原因。研究结果可为CO_2水合物浆液流动保障提供技术支撑。
        In order to clarify the flow and plugging characteristics of CO_2 hydrates in the pipeline, the hydrate formation and plugging characteristics under different liquid holdups were studied through a high-pressure visible hydrate loop. The results showed that the induction time of hydrate generation was consistent with the liquid retention. The increase of the quantity appeared a non-linear change, showing a V-shape, which decreased first and then increased. The greater the liquid holding capacity of the pipeline, the less the amount of hydrate formation and the critical volume fraction when the hydrate was clogged. For example, in the liquid holding rate at 86.6%, the volume fraction of hydrates was 4.32% when the plugged, while in the liquid holdup of 66.7%, the hydrate volume fraction was 7.45% when plugged. Through the visual pipeline, it was found that when a large amount of CO_2 hydrate was generated, the pressure drop in the pipeline would suddenly increase, the particles rapidly accumulate and grow, the flow rate decrease rapidly, CO_2 hydrate quickly fill the pipeline, the pipeline be blocked, and the hydrate particles continue to grow. The increase in flow resistance caused by the aggregation at the accumulation layer was the main reason of the blockage. The research results can provide technical support for the protection of CO_2 hydrate slurry flow.
引文
[1]SLOAN E D.Clathrate hydrates of natural gas[M]//Clathrate hydrates of natural gases.Dekker,2007.
    [2]PATRICK G Lafond,EDENDY Sloan,CAROLYN A Koh,et al.Modeling particle jamming as a hydrate plugging mechanism[C]//Proceedings of the 8th International Conference on Gas Hydrates,2014.
    [3]CHI Y,DARABOINA N,SARICA C.Investigation of inhibitors efficacy in wax deposition mitigation using a laboratory scale flow loop[J].AIChE Journal,2016,62(11):4131-4139.
    [4]CHI Y,DARABOINA N,SARICA C.Effect of the flow field on the wax deposition and performance of wax inhibitors:cold finger and flow loop testing[J].Energy&Fuels,2017,31(5):4915-4924.
    [5]DUBEY A,CHI Y,DARABOINA N,et al.Investigating the performance of paraffin inhibitors under different operating conditions[C]//SPE Technical Conference and Exhibition.2017.
    [6]孙贤,刘德俊.二氧化碳水合物动力学促进剂研究进展[J].化工进展,2018,37(2):517-524.SUN Xian,LIU Dejun.Progress in the study of the kinetics of carbon dioxide hydrate promoters[J].Chemical Industry and Engineering Progress,2018,37(2):517-524.
    [7]谢应明,谢振兴,范兴龙.CO2水合物浆作为空调载冷剂的流动和传热特性研究进展[J].化工进展,2014,33(1):10-15,49.XIE Yingming,XIE Zhenxing,FAN Xinglong.Research progress of flow and heat transfer characteristics of CO2 hydrate slurry as aqueous coolant for air conditioning[J].Chemical Industry and Engineering Progress,2014,33(1):10-15,49.
    [8]SONG G C,LI Y X,WANG W C,et al.Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J].Chemical Engineering Science,2017,158:480-489.
    [9]AKHFSH M,AMAN Z M,AHN S Y,et al.Gas hydrate plug formation in partially-dispersed water-oil systems[J].Chemical Engineering Science,2016,140:337-347.
    [10]WANG W C,FAN S S,LIANG D Q,et al.Experimental investigation on formation and blockage of HCFC-141b hydrates in pipeline[J].Journal of Xi'an Jiaotong University,2008(5):602-606.
    [11]BOXALL J A.Hydrate plug formation from 50%water content water-in-oil emulsions[D].Colorado:Colorado School of Mines,2009:55-112.
    [12]BOXALL J A,DAVIES S R,KOH C A,et al.Predicting when and where hydrate plugs form in oil-dominated flowlines[C]//Houston:SPE Projects,Facilities&Construction,2009:80-86.
    [13]AMAN Z M,PFEIFFER K,VOGT S J,et al.Corrosion inhibitor interaction at hydrate-oil interfaces from differential scanning calorimetry measurements[J].Colloids&Surfaces A:Physicochemical&Engineering Aspects,2014,448:81-87.
    [14]ZHOU S,JIANG K,ZHAO Y,et al.Experimental investigation of CO2 hydrate formation in the water containing graphite nanoparticles and tetra-n-butyl ammonium bromide[J].Journal of Chemical&Engineering Data,2018,63(2):389-394.
    [15]ZHOU S,YAN H,SU D,et al.Investigation on the kinetics of carbon dioxide hydrate formation using flow loop testing[J].Journal of Natural Gas Science&Engineering,2018,49:385-392.
    [16]胡亚飞,蔡晶,徐纯刚,等.气体水合物相变热研究进展[J].化工进展,2016,35(7):2021-2032.HU Yafei,CAI Jing,XU Chungang,et al.Research progress of phase hydration heat of gas hydrate[J].Chemical Industry and Engineering Progress,2016,35(7):2021-2032.
    [17]SARI HU J.Thermo physical and flow properties of CO2 hydrate slurry[C]//8th IIR Gustav Lorentzen Conference on Natural Working Fluids Copenhagen,2008.
    [18]FOUMAISON L,ANTHONY D A,CHATTI I,et al.CO2 hydrates in refrigeration processes[J].Industrial&Engineering Chemistry Research,2012,43(20):6521-6526.
    [19]DELAHAYE A,FOUMAISON L,MARINHAS S,et al.Rheological study of CO 2 CO 2 math container loading mathjax,hydrate slurry in a dynamic loop applied to secondary refrigeration[J].Chemical Engineering Science,2008,63(13):3551-3559.
    [20]宋光春,李玉星,王武昌,等.油气混输管道中天然气水合物的形成和堵塞过程研究[J].石油与天然气化工,2017,46(2):38-43.SONG Guangchun,LI Yuxing,WANG Wuchang,et al.Research on formation and clogging process of natural gas hydrate in oil and gas pipelines[J].Petroleum and Natural Gas Chemical Industry,2017,46(2):38-43.
    [21]雍宇,史博会,丁麟,等.水合物生成诱导期研究进展[J].化工进展,2018,37(2):505-516.YONG Yu,SHI Bohui,DING Lin,et al.Progress in the induction period of hydrate formation[J].Chemical Industry and Engineering Progress,2018,37(2):505-516.
    [22]TURNER D J.Clathrate hydrate formation in water-in-oil dispersions[D].Colorado School of Mine,Golden,CO,USA.2005.
    [23]段振豪,卫清.气体(CH4、H2S、CO2等)在水溶液中的溶解度模型[J].地质学报,2011,85(7):1079-1093.DUAN Zhenhao,WEI Qing.The solubility model of gases(CH4,H2S,CO2,etc.)in aqueous solution[J].Journal of Geology,2011,85(7):1079-1093.
    [24]SUN M W,FIROOZABADI A,CHEN G J,et al.Hydrate size measurements in anti-agglomeration at high water cut by new chemical formulation[J].Energy&Fuels,2015,29(5):2901-2905.
    [25]MOHAMMADI A,MANTEGHIAN M,HAGHTALAB A,et al.Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS[J].Chemical Engineering Journal,2014,237(1):387-395.
    [26]GRASSO G A,LAFOND P G,AMAN Z M,et al.Hydrate formation flowloop experiments[C]//ICGH,Beijing,2008.
    [27]AND J B K,SANDLER S I A.Fugacity model for gas hydrate phase equilibria[J].Industrial&Engineering Chemistry Research,2000,39(9):3377-3386.
    [28]吕晓方,吴海浩,史博会,等.流动体系中二氧化碳水合物堵管时间实验研究[J].实验室研究与探索,2013,32(11):197-202.LüXiaofang,WU Haihao,SHI Bohui,et al.Experimental study on blocking time of carbon dioxide hydrate in flow system[J].Laboratory Research and Exploration,2013,32(11):197-202.
    [29]GAO S.Hydrate risk management at high watercuts with antiagglomerant hydrate inhibitors[J].Energy&Fuels,2015,23(4):2118-2121.
    [30]TRUNG-KIEN Pham,ANA Camerirao,JEAN-MICHEL Herri.Experimental flowloop study on methane hydrate formation and agglomeration in high water cut emulsion systems[J].IPE,2016,36(13):57-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700