植被对亚热带城市生态系统CO_2通量的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Impact of vegetation on CO_2 flux of a subtropical urban ecosystem
  • 作者:龚元 ; 郭智娟 ; 张凯迪 ; 徐良 ; 魏艳艳 ; 赵敏
  • 英文作者:GONG Yuan;GUO Zhijuan;ZHANG Kaidi;XU Liang;WEI Yanyan;ZHAO Min;Key Laboratory of Urban Ecology and Environmental Processes,Shanghai Normal University;College of Biology and the Environment,Nanjing Forestry University;College of Life and Environmental Sciences,Shanghai Normal University;Geography Department,Tourism College,Shanghai Normal University;Research Center of Urban Ecology and Environment,Shanghai Normal University;
  • 关键词:涡动相关系统 ; CO2通量 ; 植物生理 ; 亚热带城市 ; 遥感
  • 英文关键词:eddy covariance;;CO2 flux;;plant physiology;;subtropical city;;remote sensing
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:上海师范大学城市生态与环境过程重点实验室;南京林业大学生物与环境学院;上海师范大学生命与环境科学学院;上海师范大学旅游学院地理系;上海师范大学城市生态与环境研究中心;
  • 出版日期:2018-10-18 14:59
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金青年基金(31100354)
  • 语种:中文;
  • 页:STXB201902014
  • 页数:12
  • CN:02
  • ISSN:11-2031/Q
  • 分类号:135-146
摘要
城市是陆地生态系统的主要碳源,而城市植被是城市区域缓解人类活动所释放的二氧化碳的主要碳汇,但对城市植被对城市大气二氧化碳的影响方面的研究比较缺乏,尤其是发展中国家。发展中国家多数处于亚热带气候区,且发展中国家城市化进程较快,为推进不同生态系统类型碳循环的研究,该研究以位于中国东南部的上海市奉贤大学城为案例,研究该区域植被对亚热带城市生态系统CO_2通量的影响。使用上海市奉贤大学城的涡动相关通量观测站点所观测和记录的2016年10月1日至2017年9月30日共计12个月的通量,气象数据结合遥感数据分析了该研究区的CO_2通量动态特征及其影响因子,主要结论是:(1)整个生态系统全年CO_2通量总交换量为9664.06μmol m~(-2)a~(-1)即表现为碳源。CO_2通量增长率在2017年5月6日达到最低为-4.48μmol m~(-2)d~(-1)在2017年7月30日的CO_2通量增长率为0,在2017年8月30日达到最高为2.24μmol m~(-2)d~(-1),生长季CO_2通量交换量为2169.58μmol m~(-2)月~(-1)低于非生长季的CO_2通量交换量(7494.48μmol m~(-2)月~(-1));(2)不同风区的CO_2通量特征不同,主要表现为随着植被面积的上升CO_2通量有下降的趋势,生长季CO_2通量均值的最低值出现在西北风区为0.09μmol m~(-2)s~(-1);(3) CO_2通量与叶面积指数呈现负相关关系,即随着叶面积指数的上升CO_2通量有下降的趋势。植物的生长状况和其生理活动影响亚热带城市生态系统的碳循环过程,该研究可以为量化城市植被对大气二氧化碳的影响提供参考,同时为亚热带地区建设绿色低碳城市提供服务。
        Cities are the main carbon source among the terrestrial ecosystem types,and urban vegetation is an important carbon sink to mitigate carbon emissions from human activities in urban areas,but research on the influence of urban vegetation on urban atmospheric carbon dioxide is scarce,especially in developing countries. Most of the developing countries are in a subtropical climate zone,and the urbanization speed in developing countries is faster than that indeveloped countries. In order to promote the study of the carbon cycle in different ecosystem types,we studied the influence of vegetation on the CO_2 fluxes of the subtropical urban ecosystem in Fengxian University city,Shanghai,China. Using the12-month flux observed and recorded by the eddy-related flux observation site in the study area and meteorological data combined with remote sensing data,the CO_2 flux dynamic characteristics and its influencing factors were analyzed. The main results are the following:(1) The study area was a carbon source,and the total annual CO_2 flux of the whole ecosystem was9664.06 μmol m~(-2)a~(-1). The CO_2 flux growth rate reached a minimum of-4.48 μmol m~(-2)d~(-1)on May 6,2017,with a CO_2 flux growth rate of 0 on July 30,2017 and a maximum of 2.24 μmol m~(-2)d~(-1)on August 30,2017. The CO_2 flux exchange in the growing season was lower than the CO_2 flux exchange in the non-growing season; these were 2169.58 μmol m~(-2)月~(-1)and7494.48 μmol m~(-2)月~(-1)respectively;(2) Urban vegetation was a carbon sink,and its CO_2 fluxes decreased with the urban vegetation area in different wind sectors. The lowest mean value of CO_2 flux in the growing season appeared in the Northwest region and was 0.09 μmol m~(-2)s~(-1);(3) Leaf area index and plant biotic characteristics influence CO_2 flux. There was a negative correlation between CO_2 flux and leaf area index. Plant growth status and plant physiological activities affected the carbon cycling process of the subtropical urban ecosystem. This study can provide a reference for quantifying the effects of urban vegetation on atmospheric carbon dioxide and provide guidelines for the construction of green low-carbon cities in subtropical areas.
引文
[1]Velasco E,Perrusquia R,Jiménez E,Hernández F,Camacho P,Rodríguez S,Retama A,Molina L T.Sources and sinks of carbon dioxide in a neighborhood of Mexico City.Atmospheric Environment,2014,97:226-238.
    [2]龚元,赵敏,姚鑫,郭智娟,何毅,张立平,林文鹏.城市生态系统复合下垫面碳通量特征---以上海市奉贤大学城为例.长江流域资源与环境,2017,26(1):91-99.
    [3]龚元,赵敏,姚鑫,郭智娟,何毅,张立平.基于Hsieh和Kljun模型的城市生态系统碳通量贡献区分析与对比.环境工程技术学报,2017,7(2):225-231.
    [4]龚元,赵敏,郭智娟,姚鑫,何毅,张立平.复杂下垫面碳通量足迹分析---以上海市奉贤大学城为例.上海师范大学学报:自然科学版,2017,46(2):284-291.
    [5]袁庄鹏.碳通量变化特征及影响因子研究[D].上海:上海师范大学,2013.
    [6]袁庄鹏,赵敏,黄辞海,高峻,林文鹏,柳云龙,刘冬燕.城市节假日前后碳通量特征及其与车流量关系.环境工程学报,2013,7(9):3501-3506.
    [7]Kordowski K,Kuttler W.Carbon dioxide fluxes over an urban park area.Atmospheric Environment,2010,44(23):2722-2730.
    [8]Velasco E,Roth M,Tan S H,Quak M,Nabarro S D A,Norford L.The role of vegetation in the CO2flux from a tropical urban neighbourhood.Atmospheric Chemistry and Physics,2013,13(20):10185-10202.
    [9]Stone J P,Steinberg D K.Influence of top-down control in the plankton food web on vertical carbon flux:a case study in the Chesapeake Bay.Journal of Experimental Marine Biology and Ecology,2018,498:16-24.
    [10]Hirano T,Sugawara H,Murayama S,Kondo H.Diurnal variation of CO2flux in an urban area of Tokyo.SOLA,2015,11:100-103.
    [11]Vesala T,Jrvi L,Launiainen S,Sogachev A,Rannik,Mammarella I,Ivola E S,Keronen P,Rinne J,Riikonen A,Nikinmaa E.Surfaceatmosphere interactions over complex urban terrain in Helsinki,Finland.Tellus B:Chemical and Physical Meteorology,2008,60(2):188-199.
    [12]Kurppa M,Nordbo A,Haapanala S,Jrvi L.Effect of seasonal variability and land use on particle number and CO2exchange in Helsinki,Finland.Urban Climate,2015,13:94-109.
    [13]Pita G,Gielen B,Zona D,Rodrigues A,Rambal S,Janssens I A,Ceulemans R.Carbon and water vapor fluxes over four forests in two contrasting climatic zones.Agricultural and Forest Meteorology,2013,180:211-224.
    [14]Jasek A,Zimnoch M,Gorczyca Z,Smula E,Rozanski K.Seasonal variability of soil CO2flux and its carbon isotope composition in Krakow urban area,Southern Poland.Isotopes in Environmental and Health Studies,2014,50(2):143-155.
    [15]Kljun N,Calanca P,Rotach M W,Schmid H P.A simple parameterisation for flux footprint predictions.Boundary-Layer Meteorology,2004,112(3):503-523.
    [16]Gill B,Moeller S.GHG emissions and the rural-urban divide.a carbon footprint analysis based on the German official income and expenditure survey.Ecological Economics,2018,145:160-169.
    [17]Feng L,Palmer P I,Parker R J,Deutscher N M,Feist D G,Kivi R,Morino I,Sussmann R.Estimates of European uptake of CO2inferred from GOSAT XCO 2retrievals:sensitivity to measurement bias inside and outside Europe.Atmospheric Chemistry and Physics,2016,16(3):1289-1302.
    [18]Guo M,Li J,Xu J W,Wang X F,He H S,Wu L.CO2emissions from the 2010 Russian wildfires using GOSAT data.Environmental Pollution,2017,226:60-68.
    [19]王江涛.崇明东滩滨海围垦区芦苇湿地CO2通量特征[D].上海:华东师范大学,2015.
    [20]顾永剑,高宇,郭海强,赵斌.崇明东滩湿地生态系统碳通量贡献区分析.复旦学报:自然科学版,2008,47(3):374-379.
    [21]Leuning R,Denmead O T,Lang A R G,Ohtaki E.Effects of heat and water vapor transport on eddy covariance measurement of CO2fluxes.Boundary-Layer Meteorology,1982,23(2):209-222.
    [22]Dyer A J,Hicks B B,King K M.The Fluxatron--A revised approach to the measurement of Eddy fluxes in the lower atmosphere.Journal of Applied Meteorology,1967,6(2):408-413.
    [23]Bakan S.Note on the Eddy correlation method for CO2flux measurements.Boundary-Layer Meteorology,1978,14(4):597-600.
    [24]Menzer O,Mc Fadden J P.Statistical partitioning of a three-year time series of direct urban net CO2flux measurements into biogenic and anthropogenic components.Atmospheric Environment,2017,170:319-333.
    [25]郭智娟,龚元,张凯迪,张立平,何毅,徐良,赵敏.复杂下垫面下不透水层的CO2通量足迹分析---以上海市奉贤大学城为例.环境科学学报,2018,38(2):772-779.
    [26]贾庆宇,周广胜,王宇,刘晓梅.城市复杂下垫面供暖前后CO2通量特征分析.环境科学,2010,31(4):843-849.
    [27]贾庆宇,周广胜,王宇.沈阳城市CO2通量的足迹分析.环境科学学报,2010,30(8):1682-1687.
    [28]Grimmond C S B,Offerle B D,Hom J,Golub D.Observations of local-scale heat,water,momentum and CO2fluxes at Cub Hill,Baltimore//Proceedings of the 4th Symposium on Urban Environments.Norfork,VA:America Meteorology Society,2002.
    [29]Vote C,Hall A,Charlton P.Carbon dioxide,water and energy fluxes of irrigated broad-acre crops in an Australian semi-arid climate zone.Environmental Earth Sciences,2015,73(1):449-465.
    [30]Wu J B,Zhou X Y,Wang A Z,Yuan F H.Comparative measurements of water vapor fluxes over a tall forest using open-and closed-path eddy covariance system.Atmospheric Measurement Techniques Discussions,2015,8(5):4711-4736.
    [31]Euskirchen E S,Edgar C W,Turetsky M R,Waldrop M P,Harden J W.Differential response of carbon fluxes to climate in three peatland ecosystems that vary in the presence and stability of permafrost.Journal of Geophysical Research:Biogeosciences,2014,119(8):1576-1595.
    [32]Gu L H,Post W M,Baldocchi D D,Black T A,Suyker A E,Verma S,Vesala T,Wofsy S C.Characterizing the seasonal dynamics of plant community photosynthesis across a range of vegetation types//Noormets A,ed.Phenology of Ecosystem Processes:Applications in Global Change Research.New York:Springer,2009:35-58.
    [33]Carlson T N,Ripley D A.On the relation between NDVI,fractional vegetation cover,and leaf area index.Remote Sensing of Environment,1997,62(3):241-252.
    [34]Kang S,Running S W,Lim J H,Zhao M S,Park C R,Loehman R.A regional phenology model for detecting onset of greenness in temperate mixed forests,Korea:an application of MODIS leaf area index.Remote Sensing of Environment,2003,86(2):232-242.
    [35]Razar R M,Missaoui A.Phenotyping winter dormancy in switchgrass to extend the growing season and improve biomass yield.Journal of Sustainable Bioenergy Systems,2018,8(1):1-22.
    [36]Menzel A,Fabian P.Growing season extended in Europe.Nature,1999,397(6721):659-659.
    [37]Sadeghi S M M,Attarod P,Pypker T G.Differences in rainfall interception during the growing and non-growing seasons in a Fraxinus rotundifolia mill.plantation located in a semiarid climate.Journal of Agricultural Science and Technology,2018,17(1):145-156.
    [38]Burri S,Frey C,Parlow E,Vogt R.CO2fluxes and concentrations over an urban surface in Cairo/Egypt//Proceedings of the 7th International Conference on Urban Climate.Yokohama,Japan:International Association for Urban Climate(IAUC),2009.
    [39]Guidolotti G,Calfapietra C,Pallozzi E,De Simoni G,Esposito R,Mattioni M,Nicolini G,Matteucci G,Brugnoli E.Promoting the potential of flux-measuring stations in urban parks:An innovative case study in Naples,Italy.Agricultural and Forest Meteorology,2017,233:153-162.
    [40]马小红,冯起,苏永红,鱼腾飞,金华.胡杨林净生态系统CO2交换特征.干旱区资源与环境,2017,31(9):108-115.
    [41]Bracho R,Starr G,Gholz H L,Martin T A,Cropper W P,Loescher H W.Controls on carbon dynamics by ecosystem structure and climate for southeastern U.S.slash pine plantations.Ecological Monographs,2012,82(1):101-128.
    [42]Milne R,Brown T A.Carbon in the vegetation and soils of Great Britain.Journal of Environmental Management,1997,49(4):413-433.
    [43]Ward H C,Kotthaus S,Grimmond C S B,Bjorkegren A,Wilkinson M,Morrison W T J,Evans J G,Morison J I L,Iamarino,M.Effects of urban density on carbon dioxide exchanges:Observations of dense urban,suburban and woodland areas of southern England.Environmental Pollution,2015,198:186-200.
    [44]Yao X,Zhao M,Escobedo F J.What causal drivers influence carbon storage in Shanghai,China's urban and peri-urban forests?.Sustainability,2017,9(4):577.
    [45]姚鑫.“城-郊”绿地木本植被群落碳储量影响因素的差异性分析[D].上海:上海师范大学,2017.
    [46]龚元.基于足迹模型的碳通量空间分异性研究---以上海市奉贤大学城为例[D].上海:上海师范大学,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700