Controllable phase transformation and improved thermal stability of nickel on tungsten substrate by electrodeposition
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Controllable phase transformation and improved thermal stability of nickel on tungsten substrate by electrodeposition
  • 作者:Minjie ; Xu ; Chao ; Hu ; Haiyan ; Xiang ; Haozi ; Lu ; Travis ; Shihao ; Hu ; Bonian ; Hu ; Song ; Liu ; Gang ; Yu
  • 英文作者:Minjie Xu;Chao Hu;Haiyan Xiang;Haozi Lu;Travis Shihao Hu;Bonian Hu;Song Liu;Gang Yu;Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University;Department of Mechanical Engineering, California State University;Department of Materials and Chemical Engineering, Hunan Institute of Technology;
  • 英文关键词:Phase transformation;;Amorphous Ni;;Electrodeposition;;Electrocrystallization;;Thermal stability
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemical/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University;Department of Mechanical Engineering, California State University;Department of Materials and Chemical Engineering, Hunan Institute of Technology;
  • 出版日期:2019-05-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by the National Natural Science Foundation of China (Nos. 21476066,51271074 and 21705036);; the Fundamental Research Funds for the Central Universities of Hunan University
  • 语种:英文;
  • 页:CLKJ201905004
  • 页数:6
  • CN:05
  • ISSN:21-1315/TG
  • 分类号:27-32
摘要
Present study reports a controllable phase transformation of nickel(Ni) from amorphous to cubic crystal structures on tungsten(W) substrate by electrodeposition. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy were used to characterize the microstructure, micro-constituents and surface morphology of as-prepared Ni. The microstructure of Ni was strongly affected by the applied overpotential and deposition time. It is demonstrated that by controlling these two parameters either amorphous or cubic crystal structure of Ni on the W substrate could be obtained. The crystallization mechanism is discussed based on Gibbs crystal growth theory and Ostwald's rule. It is concluded that W substrate, acting as a heat sink, can effectively promote the thermal stability of amorphous Ni, based on the data from differential scanning calorimetry and Kissinger's model. This work contributes to the elucidation of the crystallization mechanism of Ni on W powder substrates, and proves that, better than alloying with other elements, incorporating powder substrates will significantly improve the crystallization temperature, hence the thermostability of amorphous Ni.
        Present study reports a controllable phase transformation of nickel(Ni) from amorphous to cubic crystal structures on tungsten(W) substrate by electrodeposition. X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy were used to characterize the microstructure, micro-constituents and surface morphology of as-prepared Ni. The microstructure of Ni was strongly affected by the applied overpotential and deposition time. It is demonstrated that by controlling these two parameters either amorphous or cubic crystal structure of Ni on the W substrate could be obtained. The crystallization mechanism is discussed based on Gibbs crystal growth theory and Ostwald's rule. It is concluded that W substrate, acting as a heat sink, can effectively promote the thermal stability of amorphous Ni, based on the data from differential scanning calorimetry and Kissinger's model. This work contributes to the elucidation of the crystallization mechanism of Ni on W powder substrates, and proves that, better than alloying with other elements, incorporating powder substrates will significantly improve the crystallization temperature, hence the thermostability of amorphous Ni.
引文
[1]L.Hu,Z.Yu,Z.Hu,Y.Song,F.Zhang,H.Zhu,S.Jiao,Electrochim.Acta 174(2015)273-281.
    [2]R.Q.Guo,C.Zhang,Q.Chen,Y.Yang,N.Li,L.Liu,Corros.Sci.53(2011)2351-2356.
    [3]Y.Pei,G.Zhou,N.Luan,B.Zong,M.Qiao,F.Tao,Chem.Soc.Rev.41(2012)8140-8162.
    [4]Z.Hu,Y.Fan,Y.Chen,Appl.Phys.A 68(1999)225-229.
    [5]Z.Ma,L.Zhang,R.Chen,W.Xing,N.Xu,Chem.Eng.J.138(2008)517-522.
    [6]A.Irshad,N.Munichandraiah,ACS Appl.Mater.Interfaces 7(2015)15765-15776.
    [7]Y.Deng,Y.Yang,L.Ge,W.Yang,K.Xie,Appl.Surf.Sci.425(2017)261-271.
    [8]D.Yan,G.Yu,B.Hu,J.Zhang,Z.Song,X.Zhang,J.Alloys.Compd.653(2015)271-278.
    [9]G.Zhao,Y.Zou,H.Zhang,Z.Zou,Mater.Lett.132(2014)221-223.
    [10]Y.Wang,Z.Z.Xing,Q.Luo,A.Rahman,J.Jiao,S.J.Qu,Y.G.Zheng,J.Shen,Corros.Sci.98(2015)339-353.
    [11]A.Indra,P.W.Menezes,N.R.Sahraie,A.Bergmann,C.Das,M.Tallarida,D.Schmei?er,P.Strasser,M.Driess,J.Am.Chem.Soc.136(2014)17530-17536.
    [12]S.F.Guo,F.S.Pan,H.J.Zhang,D.F.Zhang,J.F.Wang,J.Miao,C.Su,C.Zhang,Mater.Des.108(2016)624-631.
    [13]H.Li,H.Li,W.Dai,W.Wang,Z.Fang,J.Deng,Appl.Surf.Sci.152(1999)25-34.
    [14]M.Donten,H.Cesiulis,Z.Stojek,Electrochim.Acta 45(2000)3389-3396.
    [15]Y.Qiu,L.Xin,W.Li,Langmuir 30(2014)7893-7901.
    [16]E.Peng,A.Tsubaki,C.A.Zuhlke,M.Wang,R.Bell,M.J.Lucis,T.P.Anderson,D.R.Alexander,G.Gogos,J.E.Shield,Appl.Surf.Sci.396(2017)1170-1176.
    [17]R.Hasegawa,J.Non-Cryst.Solids 287(2001)405-412.
    [18]D.Tachev,J.Georgieva,S.Armyanov,Electrochim.Acta 47(2001)359-369.
    [19]K.Dhanapal,V.Narayanan,A.Stephen,Mater.Chem.Phys.166(2015)153-159.
    [20]A.V.Knyazev,L.A.Fishgoit,P.A.Chernavskii,V.A.Safonov,S.E.Filippova,Russ.J.Phys.Chem.A 91(2017)260-263.
    [21]X.Wen,H.Dai,L.Wu,P.Wang,Appl.Surf.Sci.409(2017)132-139.
    [22]Q.Han,K.Liu,J.Chen,X.Wei,Int.J.Hydrog.Energy 28(2003)1207-1212.
    [23]I.Paseka,Electrochim.Acta 47(2001)921-931.
    [24]A.Karabulut,M.Durmaz,B.Kilinc,U.Sen,S.Sen,Acta Phys.Pol.A 131(2017)147-149.
    [25]X.Zhan,P.Zhang,P.M.Voyles,X.Liu,R.Akolkar,F.Ernst,Acta Mater.122(2017)400-411.
    [26]J.Chen,Y.Zou,K.Matsuda,G.Zhao,Mater.Lett.191(2017)214-217.
    [27]J.Wojewoda-Budka,A.Wierzbicka-Miernik,L.Litynska-Dobrzynska,M.J.Szczerba,G.Mordarski,M.Mosia?ek,Z.Huber,P.Zieba,Electrochim.Acta 209(2016)183-191.
    [28]H.Li,H.Chen,S.Dong,J.Yang,J.Deng,Appl.Surf.Sci.125(1998)115-119.
    [29]H.Li,W.Wang,H.Li,J.Deng,J.Catal.194(2000)211-221.
    [30]T.H.Zhang,X.Y.Liu,Chem.Soc.Rev.43(2014)2324-2347.
    [31]E.Budevski,G.Staikov,W.J.Lorenz,Electrochim.Acta 45(2000)2559-2574.
    [32]H.Zhong,Y.Ouyang,G.Yu,B.Hu,D.Yan,J.Mater.Sci.Technol.32(2016)1171-1178.
    [33]Z.Zuo,B.Hu,H.Chen,Q.Dong,G.Yu,J.Mater.Sci.Technol.33(2017)1409-1415.
    [34]J.Xu,G.Yu,B.Hu,J.Zhang,Q.Dong,X.Zhang,Powder Technol.264(2014)561-569.
    [35]I.N.Stranski,D.Totomanow,Z.Phys.Chem.163(1933)399-408.
    [36]W.Ostwald,Z.Phys.Chem.22(1897)289-330.
    [37]J.Gao,Y.Wu,L.Liu,B.Shen,W.Hu,Mater.Lett.59(2005)1665-1669.
    [38]Z.Huber,J.Wojewoda-Budka,A.Wierzbicka-Miernik,A.Sypien,M.Szczerba,P.Zieba,Electron.Mater.Lett.12(2016)178-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700