用户名: 密码: 验证码:
铁碳微电解-曝气膜生物反应器处理印染废水
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dyeing Industrial Wastewater Treatment by Combined Process of the Iron Carbon Micro-Electrolysis and Aeration Membrane Bioreactor
  • 作者:赵奭
  • 英文作者:ZHAO Shi;Department of Environmental Engineering, Tangshan Institute of Planning and Architectural Design;
  • 关键词:铁碳微电解 ; 曝气膜生物反应器 ; 印染废水 ; 组合工艺
  • 英文关键词:iron carbon micro-electrolysis;;aeration membrane bioreactor(MABR);;dyeing wastewater;;combined process
  • 中文刊名:SCLJ
  • 英文刊名:Technology of Water Treatment
  • 机构:唐山市规划建筑设计研究院环境工程所;
  • 出版日期:2019-03-13 10:33
  • 出版单位:水处理技术
  • 年:2019
  • 期:v.45;No.326
  • 语种:中文;
  • 页:SCLJ201903008
  • 页数:4
  • CN:03
  • ISSN:33-1127/P
  • 分类号:41-43+48
摘要
采用铁碳微电解-曝气膜生物反应器(物化-生化)组合工艺对河北省某印染厂的工业废水进行处理。结果表明,铁碳微电解处理废水的优化运行条件,即铁碳质量比3:1、pH为5、曝气反应时间4 h,在此条件下,COD、色度的去除率分别为55%、75%。铁碳微电解处理过后的废水再经曝气膜生物反应器COD负荷为7 g/(m~2·d)、水力停留时间6 h时,处理效果为优。组合工艺对印染废水COD、色度的平均去除率分别为93.8%、91.6%,处理后出水水质满足GB 4287-2012要求。
        The wastewater from a dyeing factory in hebei province was treated by the combination process of iron carbon micro-electrolysis and aeration membrane bioreactor(physicochemical and biochemical). In the physical and chemical(iron carbon micro electrolysis) stage, the best operation conditions were: iron/carbon mass ratio was 3:1, pH was 5, aerated reaction time was 4 h. Under this condition, the COD removal rate was 55%, the chroma removal rate was 75%. After that, the aerated membrane bioreactor was optimized using the treated wastewater by iron carbon micro-electrolysis, and the COD load was determined to be 7 g/(m~2·d), and the hydraulic residence time was 6 h. In the optimal processing conditions, the COD removal rate for dyeing wastewater was an average of 93.8%, chroma removal rate was 91.6%. The effluent water quality could meet the standards of GB 4287-2012.
引文
[1]王代芝,蒋惠梦.Fenton试剂氧化法去除染料废水的色度[J].工业催化,2017,25(11):82-84.
    [2]孙珊珊,刘邦海,张科亭,等.臭氧-生物处理联用工艺深度处理苯胺黑染料废水[J].中国海洋大学学报(自然科学版),2018(8):125-130.
    [3]李唯逸.高分子吸附材料在废水处理中的应用研究[J].当代化工研究,2017(8):40-42.
    [4]马红霞,张菁菁,郑艳军,等.活性炭应用于印染废水处理及其回收现状[J].纺织科技进展,2017(5):34-38.
    [5]吴惠明.臭氧氧化-活性炭协同氧化在印染废水预处理中的应用研究[J].广东化工,2017,44(6):120-121.
    [6]余丽胜,焦纬洲,刘有智,等.超声强化铁碳微电解处理硝基苯废水[J].含能材料,2016,24(10):1011-1016.
    [7]伍静静,卢志明,黄岚,等.电化学-MBR组合工艺深度处理印染废水的研究[J].上海环境科学,2014(4):163-167.
    [8]HU L,LIU B,LI B,et al.Investigation of membrane-aerated biofilm reactor(MABR)for the treatment of crude oil wastewater from offshore oil platforms[J].Desalination&Water Treatment,2016,57(9):3861-3870.
    [9]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [10]闫凯丽,郑君健,王志伟,等.缺氧/好氧电化学膜-生物反应器强化脱氮效果及抗污染性能研究[J].中国环境科学,2016,36(11):3329-3334.
    [11]纺织染整工业水污染物排放标准:GB 4287-2012[S].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700