模拟髓腔压力在牙本质粘接强度研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of simulated pulpal pressure in dentine-bonding research
  • 作者:谭欣 ; 于海洋
  • 英文作者:Tan Xin;Yu Haiyang;State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University;
  • 关键词:牙本质 ; 粘接强度 ; 模拟髓腔压力
  • 英文关键词:dentine;;bond strength;;simulated pulpal pressure
  • 中文刊名:GWKQ
  • 英文刊名:International Journal of Stomatology
  • 机构:口腔疾病研究国家重点实验室国家口腔疾病临床医学研究中心四川大学华西口腔医院修复科;
  • 出版日期:2018-11-01
  • 出版单位:国际口腔医学杂志
  • 年:2018
  • 期:v.45
  • 基金:国家自然科学基金(81571006)~~
  • 语种:中文;
  • 页:GWKQ201806021
  • 页数:5
  • CN:06
  • ISSN:51-1698/R
  • 分类号:109-113
摘要
模拟髓腔压力为探索牙本质-粘接剂界面自然衰降过程提供了一条新途径。随着树脂充填、嵌体、全冠、桩核等修复形式的广泛应用,牙本质粘接也成为了这些修复形式成功的关键。然而,对于模拟髓腔压力下,牙本质粘接强度的变化及其机制的研究结论不尽相同。本文就模拟髓腔压力下,影响牙本质粘接强度的因素及模拟髓腔压力影响粘接强度的机制等研究领域进行综述,并对防治对策展开讨论。
        As a new and practical method for dentine-bonding research, simulated pulpal pressure method is an effective tool for dental researchers to evaluate the natural degradation of the bond between dentine and adhesives. Dentinebonding has become crucial to the wide use of resin fillings and inlays, crowns, and post-and-core restorations. However, conclusions for changing the dentine bonding and its mechanism under simulated pulpal pressure remain controversial. This article contains a brief review of factors influencing dentine bonding under simulated pulpal pressure, and how they corporately act on the bond interface. Moreover, this article discusses the measures to reduce the detrimental effects of simulated pulpal pressure on dentine bonding.
引文
[1] Hashimoto M, Tay FR, Svizero NR, et al. The effects of common errors on sealing ability of total-etch adhesives[J]. Dent Mater, 2006, 22(6): 560-568.
    [2] Bacchi A, Abuna G, Consani RL, et al. Effects of simulated pulpal pressure, mechanical and thermocycling challenge on the microtensile bond strength of resin luting cements[J]. Int J Adhes Adhes, 2015, 60: 69-74.
    [3] van Landuyt KL, de Munck J, Mine A, et al. Filler debonding & subhybrid-layer failures in self-etch adhesives[J]. J Dent Res, 2010, 89(10): 1045-1050.
    [4] van Meerbeek B, Yoshihara K, Yoshida Y, et al. State of the art of self-etch adhesives[J]. Dent Mater, 2011, 27(1): 17-28.
    [5] Pashley DH, Carvalho RM. Dentine permeability and dentine adhesion[J]. J Dent, 1997, 25(5): 355- 372.
    [6] Bacchi A, Abuna G, Babbar A, et al. Influence of 3- month simulated pulpal pressure on the microtensile bond strength of simplified resin luting systems[J]. J Adhes Dent, 2015, 17(3): 265-271.
    [7] Pereira PN, Sano H, Ogata M, et al. Effect of region and dentin perfusion on bond strengths of resinmodified glass ionomer cements[J]. J Dent, 2000, 28 (5): 347-354.
    [8] Perdig?o J. Dentin bonding-variables related to the clinical situation and the substrate treatment[J]. Dent Mater, 2010, 26(2): e24-e37.
    [9] Tj?derhane L, Nascimento FD, Breschi L, et al. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins[J]. Dent Mater, 2013, 29(1): 116- 135.
    [10] Delaviz Y, Finer Y, Santerre JP. Biodegradation of resin composites and adhesives by oral bacteria and saliva: a rationale for new material designs that consider the clinical environment and treatment challenges[J]. Dent Mater, 2014, 30(1): 16-32.
    [11] Sartori N, Peruchi LD, Phark JH, et al. The influence of intrinsic water permeation on different dentin bonded interfaces formation[J]. J Dent, 2016, 48: 46-54.
    [12] Pucci CR, Gu LS, Zeng C, et al. Susceptibility of contemporary single-bottle self-etch dentine adhesives to intrinsic water permeation[J]. J Dent, 2017, 66: 52-61.
    [13] Hebling J, Castro FL, Costa CA. Adhesive performance of dentin bonding agents applied in vivo and in vitro. Effect of intrapulpal pressure and dentin depth[J]. J Biomed Mater Res B Appl Biomater, 2007, 83(2): 295-303.
    [14] Heyeraas KJ. Pulpal hemodynamics and interstitial fluid pressure: balance of transmicrovascular fluid transport[J]. J Endod, 1989, 15(10): 468-472.
    [15] Sartori N, Peruchi LD, Phark JH, et al. Permeation of intrinsic water into ethanol- and water-saturated, monomer-infiltrated dentin bond interfaces[J]. Dent Mater, 2015, 31(11): 1385-1395.
    [16] Feitosa V, Watson T, Vitti R, et al. Prolonged curing time reduces the effects of simulated pulpal pressure on the bond strength of one-step self-etch adhesives [J]. Oper Dent, 2013, 38(5): 545-554.
    [17] Tay FR, Pashley DH. Water treeing-a potential mechanism for degradation of dentin adhesives[J]. Am J Dent, 2003, 16(1): 6-12.
    [18] Silva TM, Gon?alves LL, Fonseca BM, et al. Influence of Nd: YAG laser on intrapulpal temperature and bond strength of human dentin under simulated pulpal pressure[J]. Lasers Med Sci, 2016, 31(1): 49-56.
    [19] Ciucchi B, Bouillaguet S, Holz J, et al. Dentinal fluid dynamics in human teeth, in vitro[J]. J Endod, 1995, 21(4): 191-194.
    [20] Feitosa VP, Gotti VB, Grohmann CV, et al. Two methods to simulate intrapulpal pressure: effects upon bonding performance of self-etch adhesives[J]. Int Endod J, 2014, 47(9): 819-826.
    [21] de Alexandre R, Santana V, Kasaz A, et al. Effect of long-term simulated pulpal pressure on the bond strength and nanoleakage of resin-luting agents with different bonding strategies[J]. Oper Dent, 2014, 39 (5): 508-520.
    [22] Prati C, Pashley DH, Montanari G. Hydrostatic intrapulpal pressure and bond strength of bonding systems [J]. Dent Mater, 1991, 7(1): 54-58.
    [23] Pioch T, Staehle HJ, Schneider H, et al. Effect of intrapulpal pressure simulation in vitro on shear bond strengths and hybrid layer formation[J]. Am J Dent, 2001, 14(5): 319-323.
    [24] ?zok AR, Wu MK, de Gee AJ, et al. Effect of dentin perfusion on the sealing ability and microtensile bond strengths of a total-etch versus an all-in-one adhesive[J]. Dent Mater, 2004, 20(5): 479-486.
    [25] Sauro S, Pashley DH, Montanari M, et al. Effect of simulated pulpal pressure on dentin permeability and adhesion of self-etch adhesives[J]. Dent Mater, 2007, 23(6): 705-713.
    [26] Cardoso MV, Moretto SG, Carvalho RC, et al. Influence of intrapulpal pressure simulation on the bond strength of adhesive systems to dentin[J]. Braz Oral Res, 2008, 22(2): 170-175.
    [27] Feitosa VP, Leme AA, Sauro S, et al. Hydrolytic degradation of the resin-dentine interface induced by the simulated pulpal pressure, direct and indirect water ageing[J]. J Dent, 2012, 40(12): 1134-1143.
    [28] Campos EA, Correr GM, Leonardi DP, et al. Chlorhexidine diminishes the loss of bond strength over time under simulated pulpal pressure and thermomechanical stressing[J]. J Dent, 2009, 37(2): 108- 114.
    [29] Nakajima M, Hosaka K, Yamauti M, et al. Bonding durability of a self-etching primer system to normal and caries-affected dentin under hydrostatic pulpal pressure in vitro[J]. Am J Dent, 2006, 19(3): 147- 150.
    [30] Hosaka K, Nakajima M, Takahashi M, et al. Relationship between mechanical properties of one-step self-etch adhesives and water sorption[J]. Dent Mater, 2010, 26(4): 360-367.
    [31] Manso AP, Bedran-Russo AK, Suh B, et al. Mechanical stability of adhesives under water storage [J]. Dent Mater, 2009, 25(6): 744-749.
    [32] Kim RJ, Choi NS, Ferracane J, et al. Acoustic emission analysis of the effect of simulated pulpal pressure and cavity type on the tooth-composite interfacial de-bonding[J]. Dent Mater, 2014, 30(8): 876- 883.
    [33] Feitosa VP, Correr AB, Correr-Sobrinho L, et al. Effect of a new method to simulate pulpal pressure on bond strength and nanoleakage of dental adhesives to dentin[J]. J Adhes Dent, 2012, 14(6): 517- 524.
    [34] Augustin C, Paul SJ, Lüthy H, et al. Perfusing dentine with horse serum or physiologic saline: its effect on adhesion of dentine bonding agents[J]. J Oral Rehabil, 1998, 25(8): 596-602.
    [35] Van Landuyt KL, Snauwaert J, De Munck J, et al. Origin of interfacial droplets with one-step adhesives [J]. J Dent Res, 2007, 86(8): 739-744.
    [36] Sauro S, Mannocci F, Toledano M, et al. Influence of the hydrostatic pulpal pressure on droplets formation in current etch-and-rinse and self-etch adhesives: a video rate/TSM microscopy and fluid filtration study[J]. Dent Mater, 2009, 25(11): 1392-1402.
    [37] Hosaka K, Nakajima M, Monticelli F, et al. Influence of hydrostatic pulpal pressure on the microtensile bond strength of all-in-one self-etching adhesives[J]. J Adhes Dent, 2007, 9(5): 437-442.
    [38] de Andrade e Silva SM, Carrilho MR, Marquezini Junior L, et al. Effect of an additional hydrophilic versus hydrophobic coat on the quality of dentinal sealing provided by two-step etch-and-rinse adhesives[J]. J Appl Oral Sci, 2009, 17(3): 184-189.
    [39] Santana VB, de Alexandre RS, Rodrigues JA, et al. Effects of immediate dentin sealing and pulpal pressure on resin cement bond strength and nanoleakage [J]. Oper Dent, 2016, 41(2): 189-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700