3003铝合金在30/80μs和10/350μs冲击电流下的损伤特性对比
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of the Damage Characteristics of 3003 Aluminum Alloy Under 30/80 μs and 10/350 μs Impulse Currents
  • 作者:戴明秋 ; 刘亚坤 ; 肖瑶 ; 毕晓蕾 ; 傅正财
  • 英文作者:DAI Mingqiu;LIU Yakun;XIAO Yao;BI Xiaolei;FU Zhengcai;Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, Department of Electrical Engineering,Shanghai Jiao Tong University;State Key Laboratory of Chemicals Safety, China Petroleum & Chemical Corporation Safety Engineering Institute;
  • 关键词:雷电流 ; 首次回击分量 ; 3003铝合金 ; 烧蚀损伤 ; 转移电荷 ; 作用积分 ; 微观组织形貌
  • 英文关键词:lightning current;;first return stroke;;3003 Al alloy;;ablation damage;;the charge transfer;;the action integral;;micro-morphology
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:上海交通大学电气工程系电力传输与功率变换控制教育部重点实验室;中石化股份有限公司青岛安全工程研究院化学品安全控制国家重点实验室;
  • 出版日期:2019-05-28
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.318
  • 基金:国家自然科学基金(51577117)~~
  • 语种:中文;
  • 页:GDYJ201905028
  • 页数:8
  • CN:05
  • ISSN:42-1239/TM
  • 分类号:222-229
摘要
为明确30/80μs和10/350μs冲击电流对金属损伤特性的差异以及冲击电流下金属的损伤特征,采用双指数模型计算不同幅值下两种电流的转移电荷和作用积分参数,并对照实际雷电观测数据分析其参数特征,然后进行两种电流不同幅值下的模拟雷电流损伤试验,采用扫描电镜观察金属损伤形貌、并测量损伤面积和深度。最后,结合冲击电流参数分析损伤试验结果,对比两种电流对3003铝合金损伤特性的差异。试验和分析表明:30/80μs冲击电流转移电荷与作用积分的变化范围与负地闪中首次回击电流参数的统计分布相近,而10/350μs冲击电流更符合正地闪中首次回击电流的参数特征。10/350μs冲击电流下,3003铝合金板损伤过渡区内出现沿热流方向生长的树枝晶,氧化层和损伤过渡区内有大量纳米尺寸的氧化铝颗粒析出,与30/80μs冲击电流作用时相比,3003铝合金的微观形貌变化更大。冲击电流的作用积分比转移电荷量对损伤面积有更直接的影响。除转移电荷量和作用积分外,电流持续时间是影响损伤深度的重要因素。
        To compare the damage effects of 30/80 μs and 10/350 μs impulse currents on 3003 aluminum alloy and figure out its damage characteristics under impulse currents, the charge transfer and action integral of the two impulse currents were calculated with double exponential model. The calculated parameters were then compared with the statistical parameters of natural lighting. Experiments of simulating lightning damage with the two impulse currents were conducted on3003 Al alloy sheets. Micro-morphologies of tested samples were observed with a scanning electron microscope. The damage area and damage depth were measured. Experimental results were analyzed in combination with the calculated parameters of the two impulses. It can be concluded that, the charge transfer and action integral of 30/80 μs impulse current are similar to the parameters characteristics of negative first-return-stroke currents. However, the charge transfer and action integral of the 10/350 μs impulse are similarto the parameters characteristics of positive first-return-stroke currents.Under the 10/350 μs impulse, dendrites appear and grows along the heat transfer direction in the transition zone of damage area. In addition, nano-sized alumina precipitates in the oxide film and the transition zone of damaged area inflicted by the 10/350 μs impulse, indicating that the 10/350 μs impulse will lead to severer damage than the 30/80 μs impulse.The action integral of impulse current will impair the damage area more directly than the charge transfer. Besides the charge transfer and action integral, the duration is a significant factor related to damage depth.
引文
[1]LALANDE P,BONDIOU-CLERGERIE A,LAROCHE P.Analysis of available in-flight measurements of lightning strikes to aircraft[R].USA:SAE Technical Paper,1999.
    [2]刘亚坤,夏海亮,何雨微,等.雷击时金属油罐的损伤与温升特性[J].高电压技术,2016,42(5):1578-1585.LIU Yakun,XIA Hailiang,HE Yuwei,et al.Ablation damage and temperature rise of metal oil tanks struck by direct lightning[J].High Voltage Engineering,2016,42(5):1578-1585.
    [3]FISHER F A,PLUMER J A,PERALA R A.Aircraft lightning protection handbook[M].Atlantic City,USA:Federal Aviation Administration Technical Center,1989.
    [4]KERN A.Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes[C]∥International Conference on Lightning and Static Electricity.USA:NASA Kennedy Space Center,1991:10-19.
    [5]CHEMARTIN L,LALANDE P,PEYROU B,et al.Direct effects of lightning on aircraft structure:analysis of the thermal,electrical and mechanical constraints[J].Aerospace Lab,2012(5):1-15.
    [6]ZISCHANK W,DRUMM F,FISHER R J,et al.Reliable simulation of metal surface penetration by lightning continuing currents[C]∥International Aerospace and Ground Conference on Lightning and Static Electricity.Virginia,USA:[s.n.]1995:1-10.
    [7]KOSTOGOROVA-BELLER Y.Physics of interaction of lightning currents with aluminum sheets[J].Journal of Aircraft,2012,49(1):66-75.
    [8]Aircraft lightning environment and related test waveforms:SAE-ARP5412B[S].Warrendale,Canada:Society of Automotive Engineers,2013.
    [9]Protection against lightning-part 1:general principles:IEC62305-1:2010[S],2010.
    [10]Arc welding equipment-part 1:welding power sources:IEC60974-1:2007[S],2007.
    [11]Surge arresters-part 4:metal-oxide surge arresters without gaps for a.c.systems:IEC60099-1:2014[S],2014.
    [12]POLYKRATI A D,PAISIOS M P,KARAGIANNOPOULOS C G,et al.Model for temperature estimation of electric couplings suffering heavy lightning currents[J].IEE Proceedings-Generation,Transmission and Distribution,2004,151(1):90-94.
    [13]PAISIOS M P,KARAGIANNOPOULOS C G,BOURKAS P D.Estimation of the temperature rise in cylindrical conductors subjected to heavy 10/350μs lightning current impulses[J].Electric Power Systems Research,2008,78(1):80-87.
    [14]ZHANG Y,ZHANG Y J,XIE M,et al.Characteristics and correlation of return stroke,M component and continuing current for triggered lightning[J].Electric Power Systems Research,2016,139(10):10-15.
    [15]RAKOV V A,UMAN M A.Lightning:physics and effects[M].Cambridge,UK:Cambridge University Press,2003.
    [16]王道洪,郄秀书,郭昌明.雷电与人工引雷[M].上海:上海交通大学出版社,2000:64-71.WANG Daohong,QIE Xiushu,GUO Changming.Lightning and artificial triggering lightning[M].Shanghai,China:Shanghai Jiao Tong University Press,2000:64-71.
    [17]RAKOV V A.Lightning parameters for engineering applications(keynote speech)[C]∥2010 Asia-Pacific Symposium on Electromagnetic Compatibility(APEMC).Beijing,China:IEEE,2010:1120-1123.
    [18]BERGER K.Parameters of lightning flashes[J].Electra,1975,80(41):23-37.
    [19]SABA M M F,PINTO O,BALLAROTTI M G.Relation between lightning return stroke peak current and following continuing current[J].Geophysical Research Letters,2006,33(23):343-354.
    [20]VISACRO S,SOARES A,SCHROEDER M A O,et al.Statistical analysis of lightning current parameters:measurements at morro do cachimbo station[J].Journal of Geophysical Research:Atmospheres,2004,109(D1):19-34.
    [21]FUQUAY D M.Positive cloud-to-ground lightning in summer thunder storms[J].Journal of Geophysical Research:Oceans,1982,87(C9):7131-7140.
    [22]余占清,曾嵘,王绍安,等.配电线路雷电感应过电压仿真计算分析[J].高电压技术,2013,39(2):415-422.YU Zhanqing,ZENG Rong,WANG Shao’an,et al.Simulation calculation and analysis of lightning induced overvoltage on power distribution lines[J].High Voltage Engineering,2013,39(2):415-422.
    [23]刘亚坤,戴明秋,肖瑶,等.雷电流作用下金属损伤试验的影响因素[J].高电压技术,2017,43(5):1445-1452.LIU Yakun,DAI Mingqiu,XIAO Yao,et al.Influence factors of metallic materials struck by simulated lightning currents[J].High Voltage Engineering,2017,43(5):1445-1452.
    [24]谢昌明,尚绍环,谈效华,等.高气压大电流放电条件下的电极烧蚀[J].强激光与粒子束,2013,25(9):2181-2187.XIE Changming,SHANG Shaohuan,TAN Xiaohua,et al.Electrode erosion in high pressure and high current discharge[J].High Power Laser and Particle Beams,2013,25(9):2182-2187.
    [25]李家启,陈宏,曾理,等.模拟雷电流冲击金属材料的金相组织分析[J].气象科技,2012,40(5):834-838.LI Jiaqi,CHEN Hong,ZENG Li,et al.Metallographic structure analysis of metal materials impacted by simulated lightning current[J].Meteoroglogical Science and Technology,2012,40(5):834-838.
    [26]邸曼,张明,夏大维,等.雷击火灾现场痕迹物证的鉴识方法[J].气象科技,2007,35(9):52-56.DI Man,ZHANG Ming,XIA Dawei,et al.Method for identifying debris evidences on lightning fire scenes[J].Meteoroglogical Science and Technology,2007,35(9):52-56.
    [27]林钢,林慧国,赵玉涛.铝合金应用手册[M].北京:机械工业出版社,2006:257.LIN Gang,LIN Huiguo,ZHAO Yutao.Application manual of aluminum alloy[M].Beijing,China:Machinery Industry Press,2006:257.
    [28]HAGENGUTH J H.Lightning stroke damage to aircraft[J].Transactions of the American Institute of Electrical Engineers,1949,68(2):1036-1046.
    [29]程向阳,刘亚坤,戴明秋,等.3003铝合金在雷电直击情况下的损伤特性和损伤机理[J].高电压技术,2017,43(5):1615-1620.CHENG Xiangyang,LIU Yakun,DAI Mingqiu,et al.Damage characteristics and mechanism of 3003 aluminum alloy struck by lightning[J].High Voltage Engineering,2017,43(5):1615-1620.
    [30]王建国,裴立献,薛健,等.雷电连续电流对铝合金板材的烧蚀特性[J].高电压技术,2018,41(11):3540-3545.WANG Jianguo,PEI Lixian,XUE Jian,et al.Arc erosion effect of lightning continuous current on aluminum alloy sheet[J].High Voltage Engineering,2018,41(11):3540-3545.
    [31]崔行磊.直流电弧作用下触头材料的侵蚀机理和转移特性研究[D].哈尔滨:哈尔滨工业大学,2015.CUI Xinglei.Research on contact erosion mechanism and material transfer characteristics under direct current arc[D].Harbin,China:Harbin Institute of Technology,2015.
    [32]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986:14-15.GUO Zengyuan,ZHAO Wenhua.Electric arc and hot plasma[M].Beijing,China:Science Press,1986:14-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700