布料制度对COREX CGD竖炉内气流分布影响的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical modeling for effect of charging pattern on gas distribution in COREX shaft furnace with CGD
  • 作者:张兴胜 ; 邹宗树 ; 周恒 ; 李海峰 ; 罗志国
  • 英文作者:Zhang Xingsheng;Zou Zongshu;Zhou Heng;Li Haifeng;Luo Zhiguo;Key Laboratory of Ecological Utilization of Multi-Metal Intergrown ores,Ministry of Education,Northeastern University;School of Metallurgy,Northeastern University;School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing;
  • 关键词:COREX竖炉 ; CGD ; 布料制度 ; 气流分布 ; 反窜煤气 ; 数值模拟
  • 英文关键词:COREX shaft furnace;;CGD;;charging pattern;;gas distribution;;DRI pipe gas;;numerical simulation
  • 中文刊名:HUJI
  • 英文刊名:Journal of Materials and Metallurgy
  • 机构:东北大学多金属共生矿生态利用教育部重点实验室;东北大学冶金学院;北京科技大学冶金与生态学院;
  • 出版日期:2018-12-10 11:01
  • 出版单位:材料与冶金学报
  • 年:2019
  • 期:v.18;No.69
  • 基金:国家自然科学基金资助项目(51574064)
  • 语种:中文;
  • 页:HUJI201901005
  • 页数:6
  • CN:01
  • ISSN:21-1473/TF
  • 分类号:23-28
摘要
为研究布料制度对COREX CGD预还原竖炉内煤气流分布的影响,本文建立三维数学模型对不同布料制度条件下CGD竖炉内气流速度分布、压差分布及煤气反窜比例进行了模拟研究.计算结果表明,对比中心布料制度,多环布料制度抑制了炉料偏析,使床层空隙度分布更加均匀,改善了竖炉中心煤气分布。多环布料制度增加了炉内压差并抑制了煤气反窜。随着布料档位外移,压差由35 053 Pa增至36 451 Pa,煤气反窜比例由15.64%降至13.68%.
        A three-dimensional mathematical model was developed to investigate the effect of charging pattern on the gas distribution in the COREX shaft furnace with CGD,included the distributions of gas velocity,differential pressure and the ratio of DRI pipe gas.The results showed that,compared with the center charging pattern,the multi-loop charging pattern can inhabit the particle segregation and can make the bed voidage more uniform,so it improved the distribution of gas flow in the center of the furnace.The multi-loop charging pattern increases the gas differential pressure and restrains the ratio of DRI pipe gas.With the charging radius moving outward,the gas differential pressure increases from 35053 Pa to 36451 Pa and the ratio of DRI pipe gas decreases from 15.64% to 13.68%.
引文
[1] Anameric B,Kavatra S K. Direct iron smelting reduction process[J]. Miner Process Extr Metall Rev,2008,30(1):1-51.
    [2] Thaler C,Tappeiner T,Schenk J L,et al. Integration of the blast furnace route and the finex process for low CO2 hot metal production[J]. Steel Res Int,2012,83(2):181-188.
    [3] Liu X L,Pan G,Wang G,et al. Mathematical model of lump coal falling in the freeboard zone of the COREX melter gasifier[J]. Energ Fuel,2011,25(12):5729-5735.
    [4] Ottenschlaeger E,Kepplinger W,Papst G,et al. COREX process:Hot metal production on the basis of coal[J]. MPT,1986,9(6):24-30.
    [5]李维国.关于COREX-3000生产情况和需要公关的技术问题[C]//第三届宝钢学术年会论文集. 2008(9):75-83.(Li Wei guo. Technical questions about COREX-3000production and the need for public relations[C]//The 3rd Baosteel biennial academic annual conference proceedings.Shanghai,2008(9):75-83.)
    [6]张青,郭丽.宝钢COREXC-3000竖炉操作分析及改进[C]//第三届宝钢学术年会论文集. 2008(9):219-223.(Zhang Qing,Guo Li. Analysis and improvement on Baosteel COREX C-3000 shaft furnace operation[C]//The 3rd Baosteel biennial academic annual conference proceedings.2008(9):219-223.)
    [7] Austin P R,Nogami H,Yagi J. A mathematical model for blast furnace reaction analysis based on the four fluid model[J]. ISIJ Int,1997,37(8):748-755.
    [8] Dong X F,Yu A B,Yagi J,et al. Modelling of multiphase flow in a blast furnace:recent developments and future work[J]. ISIJ Int,2007,47(11):1553-1570.
    [9] Wu S L,Xu J,Yang S D,et al. Basic characteristics of the shaft furnace of COREX smelting reduction process based on iron oxides reduction simulation[J]. ISIJ Int,2010,50(7):1032-1039.
    [10]徐辉. COREX预还原竖炉的模型研究[D].上海:上海大学,2010.(Xu Hui. Model study on COREX pre-reduction shaft furnace[D]. Shanghai:Shanghai University,2010.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700