陶瓷颗粒增强粉末冶金Fe–2Cu–0.6C复合材料的微观结构和力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe–2Cu–0.6C composites
  • 作者:何勤求 ; 李普明 ; 袁勇 ; 张德金 ; 刘增林 ; 李松林
  • 英文作者:HE Qin-qiu;LI Pu-ming;YUAN Yong;ZHANG De-jin;LIU Zeng-lin;LI Song-lin;State Key Laboratory for Powder Metallurgy, Central South University;Laiwu Iron & Steel Group Powder Metallurgy Co., Ltd.;
  • 关键词:颗粒增强 ; 粉末冶金 ; 铁基复合材料 ; 力学性能
  • 英文关键词:particle reinforcement;;powder metallurgy;;iron-based composites;;mechanical property
  • 中文刊名:FMYJ
  • 英文刊名:Powder Metallurgy Technology
  • 机构:中南大学粉末冶金国家重点实验室;莱芜钢铁集团粉末冶金有限公司;
  • 出版日期:2019-02-27
  • 出版单位:粉末冶金技术
  • 年:2019
  • 期:v.37;No.183
  • 基金:国家高技术研究发展计划(863计划)资助项目(2013AA031102)
  • 语种:中文;
  • 页:FMYJ201901003
  • 页数:8
  • CN:01
  • ISSN:11-1974/TF
  • 分类号:12-18+23
摘要
采用传统粉末冶金压制/烧结技术,经600 MPa压制、1140℃烧结制备了陶瓷颗粒增强(SiC、TiC及TiB_2陶瓷颗粒,质量分数0~1.6%)Fe–2Cu–0.6C低合金钢复合材料,对三种复合材料的微观结构和力学性能进行了研究。结果表明:在烧结过程中,SiC与TiB_2颗粒与基体发生反应,故而与基体界面结合良好;当添加质量分数为1.6%的SiC颗粒时,复合材料烧结后的布氏硬度与抗拉强度分别比基体提高了35.9%、69.4%;添加质量分数为1.2%的TiB_2颗粒时,复合材料相对密度比基体提高了5.3%,其烧结硬度、抗拉强度与基体相比分别提高了77.9%、72.6%;由于烧结过程中TiC颗粒不与基体发生反应,故而添加TiC颗粒对复合材料的布氏硬度、抗拉强度影响不大。
        Ceramic particle-reinforced Fe–2 Cu–0.6 C low-alloy steel composites(SiC, TiC, and TiB_2 ceramic particles in the mass fraction of 0~1.6%) were prepared by the conventional powder pressing/sintering technology at 600 MPa and 1140 ℃, the microstructures and mechanical properties of composites were investigated. The results show a good interface bonding between the reinforced particles(SiC and TiB_2) and the matrix because of the reaction during sintering. The Brinell hardness and tensile strength of the sintered composites added with 1.6% SiC particles by mass increase by 35.9% and 69.4%, respectively, compared with those of Fe–2Cu–0.6C matrix. When 1.2% TiB_2 particles by mass are introduced, the hardness and tensile strength of the sintered composites increase by 77.9% and 72.6%, respectively, compared with those of the matrix. Meanwhile, it is noted that the relative density of the TiB_2-reinforced low-alloy steel composite also increases by 5.3%. The addition of TiC particles has little effect on the Brinell hardness and tensile strength of the composites due to no reaction between TiC particles and the matrix.
引文
[1] Efe G C, Ipek M, Zeytin S, et al. An investigation of the effect of SiC particle size on Cu–SiC composites.Composites Part B, 2012, 43(4):1813
    [2] Morris D G, Munz-Morris M A. Nanoprecipitation of oxide particles and related high strength in oxide-dispersion-strengthened iron–aluminium–chromium intermetallics. Acta Mater, 2013, 61(12):4636
    [3] Cha L M, Lartigue-Korinek S, Walls M, et al. Interface structure and chemistry in a novel steel-based composite Fe–TiB2 obtained by eutectic solidification. Acta Mater,2012, 60(18):6382
    [4] Wang H Y, Jiang Q C, Ma B X, et al. Reactive infiltration synthesis of TiB2–TiC particulates reinforced steel matrix composites. J Alloys Compd, 2005, 391(1–2):55
    [5] Bastwros M, Kim G Y. Ultrasonic spray deposition of SiC nanoparticles for laminate metal composite fabrication.Powder Technol, 2016, 288:279
    [6] Yi D Q, Yu P C, Hu B, et al. Preparation of nickel-coated titanium carbide particulates and their use in the production of reinforced iron matrix composites. Mater Des, 2013, 52:572
    [7] Sulima I, Boczkal S, Jaworska L. SEM and TEM characterization of microstructure of stainless steel composites reinforced with TiB2. Mater Charact, 2016, 118:560
    [8] Huang X Q, Zuo A W, Wang Z, et al. Performance of iron-based composites reinforced by different SiC contents.Mater Sci Eng Powder Metall, 2014, 19(2):271(黄小琴,左爱文,王哲,等. SiC含量对铁基复合材料性能的影响.粉末冶金材料科学与工程, 2014, 19(2):271)
    [9] Song B, Dong S J, Coddet P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting. J Alloys Compd, 2013, 579(10):415
    [10] Pelleg J. Reactions in the matrix and interface of the Fe–SiC metal matrix composite system. Mater Sci Eng A,1999, 269(1–2):225
    [11] Lartigue-Korinek S, Walls M, Haneche N, et al. Interfaces and defects in a successfully hot-rolled steel-based composite Fe–TiB2. Acta Mater, 2015, 98:297
    [12] Efe G C, Zeytin S, Bindal C. The effect of SiC particle size on the properties of Cu–SiC composites. Mater Des, 2012,36:633
    [13] Zhang Y F, Ji Z, Liu G M, et al. Manufacturing process and properties of Al2O3 dispersion strengthened copper-based composite with high electrical conductivity.Powder Metall Technol, 2016, 34(5):346(张一帆,纪箴,刘贵民,等. Al2O3弥散增强Cu基高导电率复合材料的制备及性能研究.粉末冶金技术, 2016,34(5):346)
    [14] Li J R. Ceramic–Metal Composite Material. Beijing:Metallurgical Industry Press, 2004(李荣久.陶瓷–金属复合材料.北京:冶金工业出版社,2004)
    [15] Liu J W, Lv J, Wang J M, et al. Study on tribological properties of sintered ferrous alloys reinforced by SiC particles. Trans Mater Heat Treat, 2006, 27(1):16(刘君武,吕珺,王建民,等.微量SiC颗粒增强铁基合金的摩擦磨损性能研究.材料热处理学报, 2006, 27(1):16)
    [16] Beygi H, Sajjadi S A, Zebarjad S M. Microstructural analysis and mechanical characterization of aluminum matrix nanocomposites reinforced with uncoated and Cu-coated alumina particles. Mater Sci Eng A, 2014, 607:81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700