Correlation of microstructure and magnetic properties in Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets solution-treated at different temperatures
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Correlation of microstructure and magnetic properties in Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets solution-treated at different temperatures
  • 作者:Cheng ; Xu ; Hui ; Wang ; Tian-Li ; Zhang ; Alexander ; Popov ; Raghavan ; Gopalan ; Cheng-Bao ; Jiang
  • 英文作者:Cheng Xu;Hui Wang;Tian-Li Zhang;Alexander Popov;Raghavan Gopalan;Cheng-Bao Jiang;School of Materials Science and Engineering, Beihang University;M.N. Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences;International Advanced Research Centre for Powder Metallurgy and New Materials(ARCI),IITM Research Park;
  • 英文关键词:Sm_2Co_(17);;Solution treatment;;Phase constitution;;Demagnetization curve squareness
  • 中文刊名:XYJS
  • 英文刊名:稀有金属(英文版)
  • 机构:School of Materials Science and Engineering, Beihang University;M.N. Miheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences;International Advanced Research Centre for Powder Metallurgy and New Materials(ARCI),IITM Research Park;
  • 出版日期:2019-01-15
  • 出版单位:Rare Metals
  • 年:2019
  • 期:v.38
  • 基金:financially supported by the National Natural Science Foundation of China(No. 51471016);; the Natural Science Foundation of Beijing(No. 2151002);; the BRICS STI Framework Program (Nos. 51761145026 and 17-52-80072);; Department of Science and Technology,Govt of India, for supporting the work under DSTBRICS proposal reg.No 258
  • 语种:英文;
  • 页:XYJS201901003
  • 页数:9
  • CN:01
  • ISSN:11-2112/TF
  • 分类号:22-30
摘要
The correlation of microstructure and magnetic properties in Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets solution-treated at different temperatures was systematically investigated. It is found that the magnets solution-treated at 1219℃ possess a single 1:7 H phase, exhibiting the homogeneous cellular structure during further aging treatment, leading to the optimum magnetic properties. However, for the magnets solution-treated at 1211 and 1223℃,2:17 H or 1:5 H secondary phase will also form besides 1:7 H main phase, which cannot transform into cellular structure,thus deteriorating the magnetic properties greatly. The irreversible magnetization investigations with recoil loops also propose a non-uniform pinning in the magnets induced by the secondary precipitates. At proper solution temperature, Zr is supposed to occupy the Fe-Fe dumbbell sites in the form of Zr-vacancy pairs, leading to the minimum c/a ratio and thus stabilizing the 1:7 H phase. Finally,Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets with the maximum energy product and intrinsic coercivity at 550℃ up to 60.73 kJ·m~(-3) and 553.88 kA·m~(-1) were prepared by powder metallurgy method.
        The correlation of microstructure and magnetic properties in Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets solution-treated at different temperatures was systematically investigated. It is found that the magnets solution-treated at 1219℃ possess a single 1:7 H phase, exhibiting the homogeneous cellular structure during further aging treatment, leading to the optimum magnetic properties. However, for the magnets solution-treated at 1211 and 1223℃,2:17 H or 1:5 H secondary phase will also form besides 1:7 H main phase, which cannot transform into cellular structure,thus deteriorating the magnetic properties greatly. The irreversible magnetization investigations with recoil loops also propose a non-uniform pinning in the magnets induced by the secondary precipitates. At proper solution temperature, Zr is supposed to occupy the Fe-Fe dumbbell sites in the form of Zr-vacancy pairs, leading to the minimum c/a ratio and thus stabilizing the 1:7 H phase. Finally,Sm(Co_(bal)Fe_(0.1)Cu_(0.1)Zr_(0.033))_(6.93) magnets with the maximum energy product and intrinsic coercivity at 550℃ up to 60.73 kJ·m~(-3) and 553.88 kA·m~(-1) were prepared by powder metallurgy method.
引文
[1] Pathak AK, Khan M, Gschneidner KA, McCallum RW, Zhou L,Sun K, Dennis KW, Zhou C, Pinkerton FE, Kramer MJ. Cerium:an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets. Adv Mater. 2015;27(16):2663.
    [2] Gutfleisch O, M(u|¨)ller KH, Khlopkov K, Wolf M, Yan A, Schafer R, Gemming T, Schultz L. Evolution of magnetic domainstructures and coercivity in high-performance SmCo 2:17-type permanent magnets. Acta Mater. 2006;54(4):997.
    [3] Gutfleisch O, Willard MA, Br(u|¨)ck E, Chen CH, Sankar S, Liu JP.Magnetic materials and devices for the 21st century:stronger,lighter, and more energy efficient. Adv Mater. 2011;23(7):821.
    [4] Kumar S, Kumar R, Chakarvarti S. Morphological and magnetic characterization of electrodeposited cobalt nanowires. J Mater Sci. 2004;39(8):2951.
    [5] Saini D, Chauhan R, Kumar S. Effects of annealing on structural and magnetic properties of template synthesized cobalt nanowires useful as data storage and nano devices. J Mater Sci Mater Electron. 2014;25(1):124.
    [6] An S, Zheng L, Zhang T, Jiang C. Bulk anisotropic nanocrystalline SmCo_(6.6)Ti_(0.4)permanent magnets. Scr Mater. 2013;68(6):432.
    [7] Ma Z, Zhang T, Jiang C. A facile synthesis of high performance SmCo_5 nanoparticles. Chem Eng. 2015;264:610.
    [8] Ma Z, Zhang T, Jiang C. Exchange-coupled SmCo_5/Co nanocomposites synthesized by a novel strategy. RSC Adv.2015;5(108):89128.
    [9] Hadjipanayis GC. Magnetic hardening in Zr-substituted 2:17rare-earth permanent magnets. J Appl Phys. 1984;55(6):2091.
    [10] Ray A. The development of high energy product permanent magnets from 2:17 RE-TM alloys. IEEE Trans Magn. 1984;20(5):1614.
    [11] Zhang XF, Zhang WK, Li YF, Liu YL, Li ZB, Ma Q, Shi MF,Liu F. Magnetic properties of melt-spun MM-Fe-B ribbons with different wheel speeds and mischmetal contents. Rare Met.2017;36(12):992.
    [12] Yu N, Zhu M, Fang Y, Song L, Sun W, Song K, Wang Q, Li W.The microstructure and magnetic characteristics of Sm(Co_(bal)Fe_(0.1)Cu_(0.09)Zr_(0.03))_(7.24)high temperature permanent magnets. Scr Mater.2017;132:44.
    [13] Zhang T, Liu H, Liu J, Jiang C. 2:17-type SmCo quasi-single-crystal high temperature magnets. Appl Phys Lett. 2015;106(16):162403.
    [14] Zhang T, Liu H, Ma Z, Jiang C. Single crystal growth and magnetic properties of 2:17-type SmCo magnets. J Alloys Compd. 2015;637:637.
    [15] Wang Q, Zheng L, An S, Zhang T, Jiang C. Thermal stability of surface modified Sm2Co17-type high temperature magnets.J Magn Magn Mater. 2013;331:245.
    [16] Mishra RK, Thomas G, Yoneyama T, Fukuno A, Ojima T.Microstructure and properties of step aged rare earth alloy magnets. J Appl Phys. 1981;52(3):2517.
    [17] Rabenberg L, Mishra R, Thomas G. Microstructures of precipitation-hardened SmCo permanent magnets. J Appl Phys. 1982;53(3):2389.
    [18] Jiang C, Hua H, Wang J. Thermomagnetic coupling martensitic transformation and associated physical effects. Chin J Rare Met.2017;41(5):505.
    [19] Romero S, de Campos M, de Castro J, Moreira A, Landgraf F.Microstructural changes during the slow-cooling annealing of nanocrystalline SmCo 2:17 type magnets. J Alloys Compd.2013;551:312.
    [20] Gopalan R, Ohkubo T, Hono K. Identification of the cell boundary phase in the isothermally aged commercial Sm(Coo_(0.725)Fe_(0.1)Cu_(0.12)Zr_(0.04))_(7.4)sintered magnet. Scr Mater. 2006;54(7):1345.
    [21] Gopalan R, Hono K, Yan A, Gutfleisch O. Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co_(0.74)Fe_(0.1)Cu_(0.12)Zr_(0.04))_(7.4)ribbons. Scr Mater. 2009;60(9):764.
    [22] Xiong X, Ohkubo T, Koyama T, Ohashi K, Tawara Y, Hono K.The microstructure of sintered Sm(Co_(0.72)Fe_(0.20)Cu_(0.055)Zr_(0.025))_(7.5)permanent magnet studied by atom probe. Acta Mater. 2004;52(3):737.
    [23] Goll D, Kronm(u|¨)ller H, Stadelmaier H. Micromagnetism and the microstructure of high-temperature permanent magnets. J Appl Phys. 2004;96(11):6534.
    [24] Mori Y, Umeda T, Kimura Y. Phase transformation at high temperature and coercivity of Sm(Co, Cu, Fe, Zr)_(7-9)magnet alloys. IEEE Trans Magn. 1987;23(5):2702.
    [25] Livingston J, Martin D. Microstructure of aged Sm(Co, Cu, Fe)7magnets. J Appl Phys. 1977;48(3):1350.
    [26] Maury C, Rabenberg L, Allibert C. Genesis of the cell microstructure in the Sm(Co, Fe, Cu, Zr)permanent magnets with 2:17 type. Phys Status Solidi A. 1993;140(1):57.
    [27] Fidler J, Bernardi J, Skalicky P. Analytical electron microscope study of high-and low-coercivity SmCo 2:17 magnets. MRS Online Proc Libr. 1987;96:181.
    [28] Fidler J, Bernardi J, Ohashi K, Tawara Y. Analytical electron microscopy of Sm(Co, Fe, Cu, Zr)9. IEEE Trans Magn. 1990;26(5):1385.
    [29] Ray A. Metallurgical behavior of Sm(Co, Fe, Cu, Zr)z alloys.J Appl Phys. 1984;55(6):2094.
    [30] Ray AE, Soffa WA, Blachere JR, Zhang B. Cellular microstructure development in Sm(Co,Fe,Cu,Zr)_(8.35)alloys.IEEE Trans Magn. 1987;23(5):2711.
    [31] Ray A. A revised model for the metallurgical behavior of 2:17-type permanent magnet alloys. J Appl Phys. 1990;67(9):4972.
    [32] Gopalan R, Sastry T, Singh A, Chandrasekaran V. X-ray diffraction and microstructural studies in 2:17 type Sm-Co magnetic alloys containing Fe, Cu, and Zr. J Mater Res. 1999;14(06):2430.
    [33] Gopalan R, Muraleedharan K, Sastry T, Singh A, Joshi V, Rao DS, Chandrasekaran V. Studies on structural transformation and magnetic properties in Sm2Co17 type alloys. J Mater Sci. 2001;36(17):4117.
    [34] Fang Y, Chang H, Guo Z, Liu T, Li X, Li W, Chang W, Han B.Magnetic microstructures of phase-separated Sm-Co 2:17-type sintered magnets. J Alloys Compd. 2008;462(1):376.
    [35] Horiuchi Y, Hagiwara M, Okamoto K, Kobayashi T, Endo M,Nakamura T, Sakurada S. Effects of solution treated temperature on the structural and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnet. IEEE Trans Magn. 2013;49(7):3221.
    [36] Machida H, Fujiwara T, Kamada R, Morimoto Y, Takezawa M.The high squareness Sm-Co magnet having H_(cb)=10.6 kOe at150℃. AIP Adv. 2017;7(5):056223.
    [37] Liu J, Hadjipanayis G. Demagnetization curves and coercivity mechanism in Sm(CoFeCuZr)z magnets. J Magn Magn Mater.1999;195(3):620.
    [38] Nagamine L, Rechenberg H, Ray A. Fe site populations in Sm2(Co, Fe)17 and Sm(Co, Fe, Cu, Zr)8 35 alloys. J Magn Magn Mater. 1990;89(3):270.
    [39] Feutrill E, McCormick P, Street R. Magnetization behaviour in exchange-coupled-Fe. J Phys D Appl Phys. 1996;29(9):2320.
    [40] Li Z, Zhang M, Shen B, Sun J. Non-uniform magnetization reversal in nanocomposite magnets. Appl Phys Lett. 2013;102(10):102405.
    [41] Yan A, Bollero A, Gutfleisch O, M(u|¨)ller KH. Microstructure and magnetization reversal in nanocomposite SmCo_5/Sm_2Co_(17)magnets. J Appl Phys. 2002;91(4):2192.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700