Tavis-Cummings模型中的几何量子失协特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geometric quantum discord in Tavis-Cummings model
  • 作者:程景 ; 单传家 ; 刘继兵 ; 黄燕霞 ; 刘堂昆
  • 英文作者:Cheng Jing;Shan Chuan-Jia;Liu Ji-Bing;Huang Yan-Xia;Liu Tang-Kun;College of Physics and Electronic Science, Hubei Normal University;
  • 关键词:量子纠缠 ; 几何量子失协 ; 偶极-偶极相互作用
  • 英文关键词:quantum entanglement;;geometric quantum discord;;the dipole-dipole coupling intensity
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:湖北师范大学物理与电子科学学院;
  • 出版日期:2018-05-14 11:28
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:11404108);; 湖北省自然科学基金(批准号:2016CFB639)资助的课题~~
  • 语种:中文;
  • 页:WLXB201811003
  • 页数:6
  • CN:11
  • ISSN:11-1958/O4
  • 分类号:25-30
摘要
采用几何量子失协的计算方法,通过改变两原子初始状态、腔内光子数和偶极-偶极相互作用强度,研究了Tavis-Cummings模型中的几何量子失协特性.结果表明:几何量子失协都是随时间周期性振荡的,选取适当的初态可以使两原子一直保持失协状态,增加腔内光子数和偶极相互作用对几何量子失协有积极的影响.
        Quantum entanglement plays a key role in quantum information and quantum computation and thus attracts much attention in many branches of physics both in theory and in experiment. But recent studies revealed that some separable states(non-entangled state) may speed up certain tasks over their classical counterparts and may also possess certain kinds of quantum correlations. For example, geometric quantum discord, which is a more general quantum correlation measure than entanglement, can be nonzero for some separable states. From a practical point of view, it is proposed that the geometric quantum discord be responsible for the power of many quantum information processing tasks. In order to capture such correlations, Ollivier and Zurek introduced quantum discord, which measures the discrepancy between two natural yet different quantum analogues of two classically equivalent expressions of mutual information.However, the calculation of quantum discord is based on numerical maximization procedure, and there are few analytical expressions even for a two-qubit state. In order to obtain the analytical results of quantum discord, a geometric measure of quantum discord which measures the quantum correlations through the minimum Hilbert-Schmidt distance between the given state and zero discord state is introduced. Geometric quantum discord is defined as an effective measure of quantum correlation, and the geometric quantum discord through the minimal distance between the quantum state and the set of zero-discord states in a bipartite quantum system can be worked out. In this paper, by using the geometric quantum discord measurement method, the geometric quantum discord in Tavis-Cummings model is investigated, and the influences of the initial state purity, entanglement degree, dipole-dipole coupling intensity between two atoms, and field in the Fock state on the evolution characteristic of geometric quantum discord are analyzed. The results show that the geometric quantum discord appears periodically. It initially decreases to a minimum value, and then turns out to be increased for different initial states. The rigorous analysis and numerical results reveal that when we take a suitable initial state, the geometric quantum discord of two atoms can be kept in correlation. When the atoms are in the different initial states, the quantum properties of the system are significant. The photon number of the field can lead the quantum discord to be weakened. Geometric quantum discord can be increased by increasing the cavity photon number and the dipole-dipole coupling intensity. Geometric quantum discord can be enhanced obviously by increasing the strength of the dipole-dipole coupling interaction. The conclusions may conduce to the understanding of quantum correlation for the other systems from the view of geometric quantum discord.
引文
[1]Ekert A K 1991 Phys.Rev.Lett.67 661
    [2]Bennett C H,Brassard G,Grepean C,Jozsa R,Peres A,Wootters W K 1993 Phys.Rev.Lett.70 1895
    [3]Shor P W 1992 Phys.Rev.Lett.52 2493
    [4]Bogoliubov N M,Bulloughz R K,Timonenx 1996 J.Phys.A:Math.Gen.19 6305
    [5]Zuo Z C,Xia Y J 2003 Acta Phys.Sin.52 2687(in Chinese)[左战春,夏云杰2003物理学报52 2687]
    [6]Guo L,Liang X T 2009 Acta Phys.Sin.58 50(in Chinese)[郭亮,梁先庭2009物理学报58 50]
    [7]Zhang G F,Bu J J 2010 Acta Phys.Sin.59 1462(in Chinese)[张国锋,卜晶晶2010物理学报59 1462]
    [8]Ollivier H,Zurek W H 2001 Phys.Rev.Lett.88 017910
    [9]Hu Y H,Tan Y G,Liu Q 2013 Acta Phys.Sin.62 074202(in Chinese)[胡要花,谭勇刚,刘强2013物理学报62074202]
    [10]He Z,Li L W 2013 Acta Phys.Sin.18 180301(in Chinese)[贺志,李龙武2013物理学报18 180301]
    [11]Ali M,Rau A R P,Alber G 2010 Phys.Rev.A 81 359
    [12]Dakic B,Vedral V,Brukner C 2010 Phys.Rev.Lett.1054649
    [13]Fan K M,Zhang G F 2013 Acta Phys.Sin.62 130301(in Chinese)[樊开明,张国锋2013物理学报62 130301]
    [14]Hu M L,Tian D P 2014 Ann.Phys.343 132
    [15]LI Y J,Liu J M,Zhang Y 2014 Chin.Phys.B 23 110306
    [16]Chang L,Luo S 2013 Phys.Rev.A 82 034302
    [17]Zhu H J,Zhang G F 2014 Chin.Phys.B 23 120306
    [18]Song W,Yu L B,Dong P,Li D C,Yang M,Cao Z L2013 Sci.China:Phys.Mech.Astron.56 737
    [19]Xiao Y L,Li T,Fei S M,Jing N,Wang Z X 2016 Chin.Phys.B 25 030301
    [20]Zou H M,Fang M F 2016 Chin.Phys.B 25 090302
    [21]Shan C J,Xia Y J 2006 Acta Phys.Sin.55 1585(in Chinese)[单传家,夏云杰2006物理学报55 1585]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700