级联四波混频系统中纠缠增强的量子操控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process
  • 作者:杨荣国 ; 张超霞 ; 李妮 ; 张静 ; 郜江瑞
  • 英文作者:Yang Rong-Guo;Zhang Chao-Xia;Li Ni;Zhang Jing;Gao Jiang-Rui;College of Physics and Electronic Engineering, Shanxi University;State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University;Collaborative Innovation Center of Extreme Optics, Shanxi University;Institute of Opto-Electronics, Shanxi University;
  • 关键词:相位敏感放大 ; 四波混频 ; 量子纠缠 ; 量子操控
  • 英文关键词:phase sensitive amplifier;;four-wave-mixing process;;quantum entanglement;;entanglement manipulation
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:山西大学物理电子工程学院;山西大学量子光学与光量子器件国家重点实验室;山西大学极端光学协同创新中心;山西大学光电研究所;
  • 出版日期:2019-04-22 09:51
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家重点基础研究发展计划(批准号:2016YFA0301404);; 国家自然科学基金(批准号:11504218,11874248,11874249);; 量子光学与光量子器件国家重点实验室开放课题(批准号:KF201007)资助的课题~~
  • 语种:中文;
  • 页:WLXB201909018
  • 页数:7
  • CN:09
  • ISSN:11-1958/O4
  • 分类号:157-163
摘要
各类系统中的纠缠操控是量子信息科学的重要问题之一.本文研究了热原子蒸气的级联四波混频过程中产生的纠缠增强及纠缠增强的相位敏感特性.研究表明,该级联四波混频过程第二级输出的探针光和共轭光的量子纠缠较第一级明显增强,最大可达5 dB以上,且随着强度因子的增大可实现完美纠缠.文中还详细讨论了量子关联类型及纠缠大小与抽运光相位、非线性强度因子之间的变化关系,结果显示,由于纠缠增强及纠缠类型对抽运光相位的敏感性,通过控制相位和强度因子可改变光场噪声特性从而实现对探针光和耦合光之间纠缠增强、纠缠度大小、纠缠类型的量子操控.该理论研究对实验实现纠缠增强及双模压缩态压缩角、压缩度的光学参量操控具有重要的指导意义.
        Entanglement manipulation in various systems is one of the important problems in quantum information science. In this paper, the phase sensitivity and entanglement enhancement of the cascade four-wave mixing of hot atomic steam are studied. The results show that the quantum entanglement of the probe light and the conjugate light output at the second level of the cascade four-wave mixing process is significantly stronger than that at the first level, and the maximum increment can reach more than 5 dB, and the perfect entanglement can be achieved by increasing the intensity factor. The relations of quantum correlation type and the size of the entanglement with the pump phase and the nonlinear intensity factor are also discussed in this work. The results show that because of the enhancement of entanglement and the sensitivity of entanglement type to pump phase, the light field noise characteristics can be changed by controlling the phase and intensity factors thus realize the enhancement of entanglement between the probe and coupling light and the quantum manipulation of entanglement extent and quantum entanglement type. The theoretical study is of important significance for guiding the experimental implementation of optical parameter manipulation of entanglement enhancement, compression angle and compression degree of two-mode compression state.
引文
[1] Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777
    [2] Davidovich L 1996 Rev. Mod. Phys. 68 127
    [3] Lvovsky A I, Raymer M G 2009 Rev. Mod. Phys. 81 299
    [4] Polkinghorne R E S, Ralph T C 1999 Phys. Rev. Lett. 83 2095
    [5] Jing J T, Zhang J, Yan Y, Zhao F G, Xie C D, Peng K C2003 Phys. Rev. Lett. 90 167903
    [6] Wu L A, Kimble H J, Hall J L, Wu H 1986 Phys. Rev. Lett.57 2520
    [7] Ou Z Y, PereiraS F, KimbleH J, Peng K C 1992 Phy.s. Rev.Lett. 68 3663
    [8] Maeda M W, Kumar P, Kimble H J, Shapiro J H 1987 Opt.Lett. 12 161
    [9] Hsu M T L, Hetet G, Peng K, Harb C C, Bachor H A,Johnsson M T, Hope J J, Lam P K, Dantan A, Cviklinski J,Bramati A, Pinard M 2006 Phys. Rev. A 73 023806
    [10] Tang R, Devgan P S, Grigoryan V S, Kumar P, Vasilyev M2008 Opt. Express 16 9046
    [11] Tong Z, Lundstrm C, Andrekson P A, Mckinstrie C J,Karlsson M, Blessing D J, Tipsuwannakul E, Puttnam B J,Toda H, Grner-Nielsen L 2011 Nat. Photon. 5 430
    [12] Slusher R E, Hollberg L, Yurke B, Mertz J C, Valley J F1985 Phys. Rev. A 31 3512
    [13] McCormick C F, Boer V, Arimondo E, Lett P D 2007 Opt.Lett. 32 178
    [14] Pooser R, Jing J T 2014 Phys. Rev. A 90 043841
    [15] Kong J, Jing J T, Wang H J, Hudelist F, Liu C J, Zhang W P 2013 Appl. Phys. Lett. 102 011130
    [16] Qin Z Z, Cao L M, Wang H L, Marino A M, Zhang W P,Jing J T 2014 Phys. Rev. Lett. 113 023602
    [17] Cao L M, Qi J, Du J J, Jing J T 2017 Phys. Rev. A 95 023803
    [18] Fang Y M, Jing J T 2015 New J. Phys. 17 023027
    [19] Wang L, Wang H L, Li S J, Wang Y X, Jing J T 2017 Phys.Rev. A 95 013811
    [20] Wang L, Jing J T 2017 Appl. Opt. 56 2398
    [21] Boyer V, Marino A M, Pooser R C, Lett P D 2008 Science321 544
    [22] Pooser R C, Lawrie B 2015 Optica 2 393
    [23] Embrey C S, Turnbull M T, Petrov P G, Boyer V 2015 Phys.Rev. X 5 031004
    [24] Marino A M, Pooser R C, Boyer V, Lett P D 2009 Nature457 859
    [25] Pooser R C, Marino A M, Boyer V, Jones K M, Lett P D2009 Phys. Rev. Lett. 103 010501
    [26] Clark J B, Glasser R T, Glorieux Q, Vogel U, Li T, Jones K M, Lett P D 2014 Nat. Photonics 8 515
    [27] Wang H L, Fabre C, Jing J T 2017 Phys. Rev. A 95 051802
    [28] Xin J, Qi J, Jing J T 2017 Opt. Lett. 42 366
    [29] Chen H, Zhang J 2009 Phys. Rev. A 79 063826
    [30] McCormick C F, Marino A M, Boyer V, Lett P D 2008 Phys.Rev. A 78 043816
    [31] Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev.Lett. 84 2722
    [32] Shaked Y, Michael y, Vered R Z, Bello L, Rosenbluh M, Pe'er A 2018 Nat. Commun. 9 609

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700