Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development
  • 作者:Lei ; Shi ; Xin ; Luo ; Jin ; Jiang ; Yongchang ; Chen ; Cirong ; Liu ; Ting ; Hu ; Min ; Li ; Qiang ; Lin ; Yanjiao ; Li ; Jun ; Huang ; Hong ; Wang ; Yuyu ; Niu ; Yundi ; Shi ; Martin ; Styner ; Jianhong ; Wang ; Yi ; Lu ; Xuejin ; Sun ; Hualin ; Yu ; Weizhi ; Ji ; Bing ; Su
  • 英文作者:Lei Shi;Xin Luo;Jin Jiang;Yongchang Chen;Cirong Liu;Ting Hu;Min Li;Qiang Lin;Yanjiao Li;Jun Huang;Hong Wang;Yuyu Niu;Yundi Shi;Martin Styner;Jianhong Wang;Yi Lu;Xuejin Sun;Hualin Yu;Weizhi Ji;Bing Su;State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences;Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences;Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences;Kunming College of Life Science, University of Chinese Academy of Sciences;Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology;Department of Psychiatry, University of North Carolina;Department of Computer Science, University of North Carolina;Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences;Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University;Department of Minimally Invasive Neurosurgery, the First Affiliated Hospital of Kunming Medical University;
  • 英文关键词:human evolution;;brain development;;MCPH1;;transgenic monkey;;neoteny;;cognition
  • 中文刊名:NASR
  • 英文刊名:国家科学评论(英文版)
  • 机构:State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences;Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences;Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences;Kunming College of Life Science, University of Chinese Academy of Sciences;Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translation Medicine, Kunming University of Science and Technology;Department of Psychiatry, University of North Carolina,Chapel Hill;Department of Computer Science, University of North Carolina,Chapel Hill;Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences;Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University;Department of Minimally Invasive Neurosurgery, the First Affiliated Hospital of Kunming Medical University;
  • 出版日期:2019-05-15
  • 出版单位:National Science Review
  • 年:2019
  • 期:v.6
  • 基金:supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB13000000to B.S.);; the National Natural Science Foundation of China(31730088 and 31621062 to B.S.);; the Youth Innovation Promotion Association of CAS(to L.S.)
  • 语种:英文;
  • 页:NASR201903021
  • 页数:14
  • CN:03
  • ISSN:10-1088/N
  • 分类号:110-123
摘要
Brain size and cognitive skills are the most dramatically changed traits in humans during evolution and yet the genetic mechanisms underlying these human-specific changes remain elusive. Here, we successfully generated 11 transgenic rhesus monkeys(8 first-generation and 3 second-generation) carrying human copies of MCPH1, an important gene for brain development and brain evolution. Brain-image and tissue-section analyses indicated an altered pattern of neural-cell differentiation, resulting in a delayed neuronal maturation and neural-fiber myelination of the transgenic monkeys, similar to the known evolutionary change of developmental delay(neoteny) in humans. Further brain-transcriptome and tissue-section analyses of major developmental stages showed a marked human-like expression delay of neuron differentiation and synaptic-signaling genes, providing a molecular explanation for the observed brain-developmental delay of the transgenic monkeys. More importantly, the transgenic monkeys exhibited better short-term memory and shorter reaction time compared with the wild-type controls in the delayed-matching-to-sample task. The presented data represent the first attempt to experimentally interrogate the genetic basis of human brain origin using a transgenic monkey model and it values the use of non-human primates in understanding unique human traits.
        Brain size and cognitive skills are the most dramatically changed traits in humans during evolution and yet the genetic mechanisms underlying these human-specific changes remain elusive. Here, we successfully generated 11 transgenic rhesus monkeys(8 first-generation and 3 second-generation) carrying human copies of MCPH1, an important gene for brain development and brain evolution. Brain-image and tissue-section analyses indicated an altered pattern of neural-cell differentiation, resulting in a delayed neuronal maturation and neural-fiber myelination of the transgenic monkeys, similar to the known evolutionary change of developmental delay(neoteny) in humans. Further brain-transcriptome and tissue-section analyses of major developmental stages showed a marked human-like expression delay of neuron differentiation and synaptic-signaling genes, providing a molecular explanation for the observed brain-developmental delay of the transgenic monkeys. More importantly, the transgenic monkeys exhibited better short-term memory and shorter reaction time compared with the wild-type controls in the delayed-matching-to-sample task. The presented data represent the first attempt to experimentally interrogate the genetic basis of human brain origin using a transgenic monkey model and it values the use of non-human primates in understanding unique human traits.
引文
1.Clark AG,Glanowski S and Nielsen R et al.Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios.Science 2003;302:1960-3.
    2.Bustamante CD,Fledel-Alon A and Williamson S et al.Natural selection on protein-coding genes in the human genome.Nature2005;437:1153-7.
    3.Necsulea A,Soumillon M and Warnefors M et al.The evolution of lnc RNA repertoires and expression patterns in tetrapods.Nature 2014;505:635-40.
    4.Bentwich I,Avniel A and Karov Y et al.Identification of hundreds of conserved and nonconserved human micro RNAs.Nat Genet2005;37:766-70.
    5.Zhang R,Peng Y and Wang W et al.Rapid evolution of an X-linked microRNA cluster in primates.Genome Res 2007;17:612-7.
    6.Bailey JA,Gu ZP and Clark RA et al.Recent segmental duplications in the human genome.Science 2002;297:1003-7.
    7.Dennis MY,Nuttle X and Sudmant PH et al.Evolution of humanspecific neural SRGAP2 genes by incomplete segmental duplication.Cell 2012;149:912-22.
    8.Florio M,Albert M and Taverna E et al.Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion.Science 2015;347:1465-70.
    9.Khaitovich P,Hellmann I and Enard W et al.Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees.Science 2005;309:1850-4.
    10.Enard W,Khaitovich P and Klose J et al.Intra-and interspecific variation in primate gene expression patterns.Science 2002;296:340-3.
    11.Liu X,Somel M and Tang L et al.Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques.Genome Res 2012;22:611-22.
    12.He Z,Han D and Efimova O et al.Comprehensive transcriptome analysis of neocortical layers in humans,chimpanzees and macaques.Nat Neurosci 2017;20:886-95.
    13.Zeng J,Konopka G and Hunt BG et al.Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.Am J Hum Genet2012;91:455-65.
    14.Shulha HP,Crisci JL and Reshetov D et al.Human-specific histone methylation signatures at transcription start sites in prefrontal neurons.PLo S Biol 2012;10:e1001427.
    15.Mendizabal I,Shi L and Keller TE et al.Comparative methylome analyses identify epigenetic regulatory loci of human brain evolution.Mol Biol Evol 2016;33:2947-59.
    16.Pulyers JN,Journiac N and Arai Y et al.MCPH1:a window into brain development and evolution.Front Cell Neurosci 2015;9:92.
    17.Wang YQ and Su B.Molecular evolution of microcephalin,a gene determining human brain size.Hum Mol Genet 2004;13:1131-7.
    18.Shi L,Li M and Lin Q et al.Functional divergence of the brain-size regulating gene MCPH1 during primate evolution and the origin of humans.BMC Biol2013;11:62
    19.Yang S-Z,Lin F-T and Lin W-C.MCPH1/BRIT1 cooperates with E2F1 in the activation of checkpoint,DNA repair and apoptosis.EMBO Rep 2008;9:907-15.
    20.Liu X,Zhou ZW and Wang ZQ.The DNA damage response molecule MCPH1 in brain development and beyond.Acta Biochim Biophys Sin 2016;48:678-85.
    21.Peng G,Yim EK and Dai H et al.BRIT1/MCPH1 links chromatin remodelling to DNA damage response.Nat Cell Biol 2009;11:865-72.
    22.Gruber R,Zhou Z and Sukchev M et al.MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1-Cdc25 pathway.Nat Cell Biol 2011;13:1325-34.
    23.Woods CG,Bond J and Enard W.Autosomal recessive primary microcephaly(MCPH):a review of clinical,molecular,and evolutionary findings.Am J Hum Genet 2005;76:717-28.
    24.Jackson AP,Eastwood H and Bell SM et al.Identification of microcephalin,a protein implicated in determining the size of the human brain.Am J Hum Genet2002;71:136-42.
    25.Trimborn M,Bell SM and Felix C et al.Mutations in microcephalin cause aberrant regulation of chromosome condensation.Am J Hum Genet 2004;75:261-6.
    26.Ke Q,Li W and Lai X et al.TALEN-based generation of a cynomolgus monkey disease model for human microcephaly.Cell Res 2016;26:1048-61.
    27.Zhong S,Zhang S and Fan X et al.A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex.Nature 2018;555:524-8.
    28.Yan G,Zhang G and Fang X et al.Genome sequencing and comparison of two nonhuman primate animal models,the cynomolgus and Chinese rhesus macaques.Nat Biotechnol 2011;29:1019-23.
    29.Coors ME,Glover JJ and Juengst ET et al.The ethics of using transgenic nonhuman primates to study what makes us human.Nat Rev Genet 2010;11:658-62.
    30.Shi L and Su B.Identification and functional characterization of a primatespecific E2F1 binding motif regulating MCPH1 expression.FEBS J 2012;279:491-503.
    31.Xu X,Lee J and Stern DF.Microcephalin is a DNA damage response protein involved in regulation of CHK1 and BRCA1.J Biol Chem 2004;279:34091-4.
    32.Liu Z,Li X and Zhang JT et al.Autism-like behaviours and germline transmission in transgenic monkeys overexpressing Me CP2.Nature 2016;530:98-102.
    33.Liu C,Tian X and Liu H et al.Rhesus monkey brain development during late infancy and the effect of phencyclidine:a longitudinal MRI and DTI study.Neuroimage 2015;107:65-75.
    34.Hofman MA.Size and shape of the cerebral cortex in mammals.Brain Behav Evol 1985;27:28-40.
    35.Mori S and Zhang J.Principles of diffusion tensor imaging and its applications to basic neuroscience research.Neuron 2006;51:527-39.
    36.Pierpaoli C and Basser PJ.Toward a quantitative assessment of diffusion anisotropy.Magn Reson Med 1996;36:893-906.
    37.Madden DJ,Bennett IJ and Burzynska A et al.Diffusion tensor imaging of cerebral white matter integrity in cognitive aging.BBA-Mol Basis Dis 2012;1822:386-400.
    38.Montagu MFA.Time,morphology,and neoteny in the evolution of Man.Am Anthropol 1955;57:13-27.
    39.Huang da W,Sherman BT and Lempicki RA.Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists.Nucleic Acids Res 2009;37:1-13.
    40.Pirooznia M,Wang T and Avramopoulos D et al.Synaptome DB:an ontology-based knowledgebase for synaptic genes.Bioinformatics 2012;28:897-9.
    41.von Eichborn J,Dunkel M and Gohlke BO et al.Syn Sys Net:integration of experimental data on synaptic protein-protein interactions with drug-target relations.Nucleic Acids Res 2013;41:D834-40.
    42.Hawk JD and Abel T.The role of NR4A transcription factors in memory formation.Brain Res Bull 2011;85:21-9.
    43.Chen Y,Wang Y and Erturk A et al.Activity-induced Nr4a1 regulates spine density and distribution pattern of excitatory synapses in pyramidal neurons.Neuron 2014;83:431-43.
    44.Betizeau M,Cortay V and Patti D et al.Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate.Neuron2013;80:442-57.
    45.Zhu B,Carmichael RE and Solabre Valois L et al.The transcription factor MEF2Aplays a key role in the differentiation/maturation of rat neural stem cells into neurons.Biochem Biophys Res Commun 2018;500:645-9.
    46.Chen Y,Yu J and Niu Y et al.Modeling rett syndrome using TALEN-Edited MECP2 mutant cynomolgus monkeys.Cell 2017;169:945-55.e10.
    47.Fuster JM and Alexander GE.Neuron activity related to short-term memory.Science 1971;173:652-4.
    48.Carlen M.What constitutes the prefrontal cortex?Science 2017;358:478-82.
    49.Goldman-Rakic PS.Cellular basis of working memory.Neuron 1995;14:477-85.
    50.Shi L,Li M and Su B.MCPH1/BRIT1 represses transcription of the human telomerase reverse transcriptase gene.Gene 2012;495:1-9.
    51.Paus T,Zijdenbos A and Worsley K et al.Structural maturation of neural pathways in children and adolescents:in vivo study.Science 1999;283:1908-11.
    52.Miller DJ,Duka T and Stimpson CD et al.Prolonged myelination in human neocortical evolution.Proc Natl Acad Sci USA 2012;109:16480-5.
    53.West AE and Greenberg ME.Neuronal activity-regulated gene transcription in synapse development and cognitive function.CSH Perspect Biol 2011;3:a005744.
    54.Duan H,Wearne SL and Rocher AB et al.Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys.Cereb Cortex 2003;13:950-61.
    55.Yang SH,Cheng PH and Banta H et al.Towards a transgenic model of Huntington’s disease in a non-human primate.Nature 2008;453:921-4.
    56.Jennings CG,Landman R and Zhou Y et al.Opportunities and challenges in modeling human brain disorders in transgenic primates.Nat Neurosci 2016;19:1123-30.
    57.Izpisua Belmonte JC,Callaway EM and Caddick SJ et al.Brains,genes,and primates.Neuron 2015;86:617-31.
    58.Niu Y,Shen B and Cui Y et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos.Cell 2014;156:836-43.
    59.Liu H,Chen Y and Niu Y et al.TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys.Cell Stem Cell 2014;14:323-8.
    60.Liu Z,Cai Y and Liao Z et al.Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer.Natl Sci Rev 2019;6:101-8.
    61.Qiu P,Jiang J and Liu Z et al.BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders.Natl Sci Rev 2019;6:87-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700