A thiophene-containing covalent triazine-based framework with ultramicropore for CO_2 capture
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A thiophene-containing covalent triazine-based framework with ultramicropore for CO_2 capture
  • 作者:Keke ; Wang ; Yuanzhe ; Tang ; Qin ; Jiang ; Youshi ; Lan ; Hongliang ; Huang ; Dahuan ; Liu ; Chongli ; Zhong
  • 英文作者:Keke Wang;Yuanzhe Tang;Qin Jiang;Youshi Lan;Hongliang Huang;Dahuan Liu;Chongli Zhong;State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology;State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University;Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology;
  • 英文关键词:Covalent triazine-based framework;;Ultramicropore;;Adsorption;;Carbon dioxide
  • 中文刊名:TRQZ
  • 英文刊名:能源化学(英文版)
  • 机构:State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology;State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University;Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology;
  • 出版日期:2017-09-15
  • 出版单位:Journal of Energy Chemistry
  • 年:2017
  • 期:v.26
  • 基金:supported by the National Key R&D Program of China (2016YFB0600901);; the Natural Science Foundation of China (grant nos. 21536001 and 21606007)
  • 语种:英文;
  • 页:TRQZ201705010
  • 页数:7
  • CN:05
  • ISSN:10-1287/O6
  • 分类号:94-100
摘要
In this work, a 2D covalent triazine-based framework was prepared by using 1,3-dicyanobenzo[c]thiophene(DCBT) as monomer to effectively capture CO_2. The resulting CTF-DCBT was characterized by FT-IR, XPS, PXRD, elemental analysis, SEM, TEM, and N_2 adsorption-desorption.The results indicate that CTF-DCBT is partially crystalline and has ultramicropore(6.5 A?) as well as high heteroatom contents(11.24 wt% and 12.61 wt% for N and S, respectively). In addition, the BET surface area and total pore volume of CTF-DCBT are 500 m~2/g and 0.26 cm~3/g, respectively. CTF-DCBT possesses excellent thermal stability(450 °C) and chemical stability towards boiling water, 4 M HCl, and 1 M Na OH.The CO_2 adsorption capacity of CTF-DCBT is 37.8 cm~3/g at 1 bar and 25 °C. After six adsorption-desorption cycles, there is no obvious loss of CO_2 uptake observed. Due to the ultramicropore and high heteroatom contents, CTF-DCBT has high isosteric heats of adsorption for CO_2 and high selectivities of CO_2 over N_2 and CH_4. At 25 °C, the CO_2/N_2 and CO_2/CH_4 selectivities are 112.5 and 10.3, respectively, which are higher than those of most POFs. Breakthrough curves indicate that CTF-DCBT could effectively separate CO_2/N_2 and CO_2/CH_4 mixtures.
        In this work, a 2D covalent triazine-based framework was prepared by using 1,3-dicyanobenzo[c]thiophene(DCBT) as monomer to effectively capture CO_2. The resulting CTF-DCBT was characterized by FT-IR, XPS, PXRD, elemental analysis, SEM, TEM, and N_2 adsorption-desorption.The results indicate that CTF-DCBT is partially crystalline and has ultramicropore(6.5 A?) as well as high heteroatom contents(11.24 wt% and 12.61 wt% for N and S, respectively). In addition, the BET surface area and total pore volume of CTF-DCBT are 500 m~2/g and 0.26 cm~3/g, respectively. CTF-DCBT possesses excellent thermal stability(450 °C) and chemical stability towards boiling water, 4 M HCl, and 1 M Na OH.The CO_2 adsorption capacity of CTF-DCBT is 37.8 cm~3/g at 1 bar and 25 °C. After six adsorption-desorption cycles, there is no obvious loss of CO_2 uptake observed. Due to the ultramicropore and high heteroatom contents, CTF-DCBT has high isosteric heats of adsorption for CO_2 and high selectivities of CO_2 over N_2 and CH_4. At 25 °C, the CO_2/N_2 and CO_2/CH_4 selectivities are 112.5 and 10.3, respectively, which are higher than those of most POFs. Breakthrough curves indicate that CTF-DCBT could effectively separate CO_2/N_2 and CO_2/CH_4 mixtures.
引文
[1]Z.Liu,Y.Teng,K.Zhang,H.Chen,Y.Yang,J.Energy Chem.24(2015)322–330.
    [2]L.Wang,Y.Li,S.Li,P.Ji,C.Jiang,J.Energy Chem.23(2014)717–725.
    [3]K.Sumida,D.L.Rogow,J.A.Mason,T.M.Mc Donald,E.D.Bloch,Z.R.Herm,T.H.Bae,J.R.Long,Chem.Rev.112(2012)724–781.
    [4]J.Yang,R.Krishna,J.Li,J Li,Microporous Mesoporous Mater.184(2014)21–27.
    [5]Q.Song,S.K.Nataraj,M.V.Roussenova,J.C.Tan,D.J.Hughes,W.Li,P.Bourgoin,M.A.Alam,A.K.Cheetham,S.A.Al-Muhtaseb,E.Sivaniah,Energy Environ.Sci.5(2012)8359–8369.
    [6]K.Wang,H.Huang,D.Liu,C.Wang,J.Li,C.Zhong,Environ.Sci.Technol.50(2016)4869–4876.
    [7]B.Lv,B.Guo,Z.Zhou,G.Jing,Environ.Sci.Technol.49(2015)10728–10735.
    [8]A.Samanta,A.Zhao,G.K.H.Shimizu,P.Sarkar,R.Gupta Ind,Ind.Eng.Chem.Res.51(2012)1438–1463.
    [9]J.-R.Li,R.J.Kuppler,H.-C.Zhou,Chem.Soc.Rev.38(2009)1477–1504.
    [10]X.Zou,H.Ren,G.Zhu,Chem.Commun.49(2013)3925–3936.
    [11]M.Yang,L.Guo,G.Hu,X.Hu,J.Chen,S.Shen,W.Dai,M.Fan,Ind.Eng.Chem.Res.55(2016)757–765.
    [12]F.Su,C.Lu,S.-C.Kuo,W.Zeng,Energy Fuels 24(2010)1441–1448.
    [13]B.Sreenivasulu,I.Sreedhar,P.Suresh,K.V.Raghavan,Environ.Sci.Technol.49(2015)12641–12661.
    [14]O.K.Farha,J.T.Hupp,Acc.Chem.Res.43(2010)1166–1175.
    [15]S.-Y.Ding,W.Wang,Chem.Soc.Rev.42(2013)548–568.
    [16]Y.Zeng,R.Zou,Z.Luo,H.Zhang,X.Yao,X.Ma,R.Zou,Yanli Zhao,J.Am.Chem.Soc.137(2015)1020–1023.
    [17]A.D.Regno,A.Gonciaruk,L.Leay,M.Carta,M.Croad,R.Malpass-Evans,N.B.Mc Keown,F.R.Siperstein,Ind.Eng.Chem.Res.52(2013)16939–16950.
    [18]T.Ben,S.Qiu,Cryst Eng Comm 15(2013)17–26.
    [19]L.Chen,Y.Yang,D.Jiang,J.Am.Chem.Soc.132(2010)9138–9143.
    [20]C.F.Martin,E.Stockel,R.Clowes,D.J.Adams,A.I.Cooper,J.J.Pis,F.Rubiera,C.Pevida,J.Mater.Chem.21(2011)5475–5483.
    [21]M.G.Rabbani,H.M.El-Kaderi,Chem.Mater.23(2011)1650–1653.
    [22]N.Popp,T.Homburg,N.Stock,J.Senker,J.Mater.Chem.A 3(2015)18492–18504.
    [23]K.Sakaushi,M.Antonietti,Acc.Chem.Res.48(2015)1591–1600.
    [24]C.Gu,D.Liu,W.Huang,J.Liu,R.Yang,Polym.Chem.6(2015)7410–7417.
    [25]A.Bhunia,I.Boldog,A.Molle,C.Janiak,J.Mater.Chem.A 1(2013)14990–14999.
    [26]Q.Yang,C.Zhong,J.-F.Chen,J.Phys.Chem.C 112(2008)1562–1569.
    [27]K.Adil,Y.Belmabkhout,R.S.Pillai,A.Cadiau,P.M.Bhatt,A.H.Assen,G.Maurin,M.Eddaoudi,Chem.Soc.Rev.46(2017)3402–3430.
    [28]H.Huang,W.Zhang,F.Yang,B.Wang,Q.Yang,Y.Xie,C.Zhong,J.-R.Li,Chem.Eng.J.289(2016)247–253.
    [29]M.Saleh,H.M.Lee,K.C.Kemp,K.S.Kim,ACS Appl.Mater.Interfaces 6(2014)7325–7333.
    [30]P.Mohanty,L.D.Kull,K.Landskron,Nat.Commun.2(2011)401.
    [31]Y.Xia,Y.Zhu,Y.Tang,Carbon 50(2012)5543–5553.
    [32]R.R.Amaresh,M.V.Lakshmikantham,J.W.Baldwin,M.P.Cava,R.M.Metzger,R.D.Rogers,J.Org.Chem.67(2002)2453–2458.
    [33]P.Kuhn,A.Thomas,M.Antonietti,Macromolecules 42(2009)319–326.
    [34]S.Wu,Y.Liu,G.Yu,J.Guan,C.Pan,Y.Du,X.Xiong,Z.Wang,Macromolecules47(2014)2875–2882.
    [35]P.Puthiaraj,S.-S.Kim,W.-S.Ahn,Chem.Eng.J.283(2016)184–192.
    [36]Y.Zhao,K.X.Yao,B.Teng,T.Zhang,Y.Han,Energy Environ.Sci.6(2013)3684–3692.
    [37]A.Bhunia,V.Vasylyeva,C.Janiak,Chem.Commun.49(2013)3961–3963.
    [38]F.Buckel,F.Effenberger,C.Yan,A.G?lzh?user,M.Grunze,Adv.Mater.12(2000)901–905.
    [39]C.Han,X.Bo,Y.Zhang,M.Li,L.Guo,J.Power Sources 272(2014)267–276.
    [40]W.Tian,H.Zhang,H.Sun,A.Suvorova,M.Saunders,M.Tade,S.Wang,Adv.Funct.Mater.26(2016)8651–8661.
    [41]S.Yang,L.Zhi,K.Tang,X.Feng,J.Maier,K.Müllen,Adv.Funct.Mater.22(2012)3634–3640.
    [42]P.Kuhn,M.Antonietti,A.Thomas,Angew.Chem.Int.Ed.47(2008)3450–3453.
    [43]S.Ren,M.J.Bojdys,R.Dawson,A.Laybourn,Y.Z.Khimyak,D.J.Adams,A.I.Cooper,Adv.Mater.24(2012)2357–2361.
    [44]S.Wu,S.Gu,A.Zhang,G.Yu,Z.Wang,J.Jian,C.Pan,J.Mater.Chem.A 3(2015)878–885.
    [45]M.Thommes,K.Kaneko,A.V.Neimark,J.P.Olivier,F.Rodriguez-Reinoso,J.Rouquerol,K.S.W.Sing,Pure Appl.Chem.87(2015)1051–1069.
    [46]K.A.Cychosz,R.Guillet-Nicolas,J.García-Martínez,M.Thommes,Chem.Soc.Rev.46(2017)389–414.
    [47]Colloids Surf.A:Physicochem.Eng.Asp.437(2013)3–23.
    [48]S.Xiong,X.Fu,L.Xiang,G.Yu,J.Guan,Z.Wang,Y.Du,X.Xiong,C.Pan,Polym.Chem.5(2014)3424–3431.
    [49]Y.-Q.Shi,J.Zhu,X.-Q.Liu,J.-C.Geng,L.-B.Sun,ACS Appl.Mater.Interfaces 6(2014)20340–20349.
    [50]R.Dawson,D.J.Adams,A.I.Cooper,Chem.Sci.2(2011)1173–1177.
    [51]M.R.Liebl,J.Senker,Chem.Mater.25(2013)970–980.
    [52]S.Ren,R.Dawson,A.Laybourn,J.Jiang,Y.Khimyak,D.J.Adams,A.I.Cooper,Polym.Chem.3(2012)928–934.
    [53]X.Jing,D.Zou,P.Cui,H.Ren,G.Zhu,J.Mater.Chem.A 1(2013)13926–13931.
    [54]R.Yuan,H.Ren,Z.Yan,A.Wang,G.Zhu,Polym.Chem.5(2014)2266–2272.
    [55]A.Bhunia,D.Esquivel,S.Dey,R.Fernandez-Teran,Y.Goto,S.Inagaki,P.Van Der Voort,C.Janiak,J.Mater.Chem.A 4(2016)13450–13457.
    [56]L.-B.Sun,A.-G.Li,X.-D.Liu,X.-Q.Liu,D.Feng,W.Lu,D.Yuan,H.-C.Zhou,J.Mater.Chem.A 3(2015)3252–3256.
    [57]S.K.Das,X.Wang,M.M.Ostwal,Y.Zhao,Y.Han,Z.Lai,Chem.Eng.Sci.145(2016)21–30.
    [58]J.Lu,J.Zhang,J.Mater.Chem.A 2(2014)13831–13834.
    [59]M.G.Rabbani,H.M.El-Kaderi,Chem.Mater.24(2012)1511–1517.
    [60]P.Puthiaraj,S.-M.Cho,Y.-R.Lee,W.-S.Ahn,J.Mater.Chem.A 3(2015)6792–6797.
    [61]T.Islamoglu,M.G.Rabbani,H.M.El-Kaderi,J.Mater.Chem.A 1(2013)10259–10266.
    [62]G.Li,Z.Wang,J.Phys.Chem.C 117(2013)24428–24437.
    [63]G.Li,B.Zhang,Z.Wang,Macromol.Rapid Commun.35(2014)971–975.
    [64]W.-C.Song,X.-K.Xu,Q.Chen,Z.-Z.Zhuang,X.-H.Bu,Polym.Chem.4(2013)4690–4696.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700