DEAE-52纤维素静态法分离纯化桦褐孔菌多糖的工艺优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of purification of polysaccharides from the Inonotus obliquus using DEAE-52 cellulose static method
  • 作者:董文霞 ; 刘萍 ; 张京声 ; 吴培培 ; 杨革
  • 英文作者:DONG Wen-xia;LIU Ping;ZHANG Jing-sheng;WU Pei-pei;YANG Ge;College of Life Science,Qufu Normal University;College of Food Science and Nutritional Engineering,China Agricultural University;
  • 关键词:桦褐孔菌子实体多糖 ; DEAE-52纤维素 ; 静态吸附 ; 静态解吸
  • 英文关键词:the polysaccharides from the fruiting body of Inonotus obliquus;;DEAE-52 cellulose;;static adsorption;;static desorption
  • 中文刊名:SPKJ
  • 英文刊名:Science and Technology of Food Industry
  • 机构:曲阜师范大学生命科学学院;中国农业大学食品与营养工程学院;
  • 出版日期:2017-10-25 11:30
  • 出版单位:食品工业科技
  • 年:2018
  • 期:v.39;No.396
  • 基金:国家自然基金项目(21576282);; 山东省研究生教育创新计划项目(SDYY14056)
  • 语种:中文;
  • 页:SPKJ201804029
  • 页数:6
  • CN:04
  • ISSN:11-1759/TS
  • 分类号:160-164+171
摘要
为了能高效快速的分离纯化桦褐孔菌子实体多糖,使用DEAE-52纤维素静态法,分别研究了静态吸附过程中多糖的样品浓度、吸附时间、吸附温度和吸附振荡转速等因素对多糖吸附量的影响及解吸过程中洗脱时间和洗脱液量对多糖解吸量的影响,确定了多糖分离纯化优化工艺条件。结果表明:多糖浓度为40 mg/m L时,在30℃,120 r/min转速下吸附处理90 min,此时DEAE-52纤维素对多糖吸附效果最好。而分别以12倍体积的去离子水洗脱90 min后,采用11倍体积的0.2 mol/L Na Cl溶液洗脱60 min时,能达到最好的解吸效果,其中去离子水洗脱多糖浓度为0.56 mg/m L,0.2 mol/L Na Cl洗脱多糖浓度为0.38 mg/m L。静态洗脱出的两种多糖组分均为分子量均一分布的多糖组分,与DEAE-52纤维素柱层析分离效果一致。因此采用DEAE-52纤维素静态法分离纯化桦褐孔菌子实体多糖是可行的。
        In order to purify the polysaccharides efficiently and rapidly from the fruiting body of Inonotus obliquus,the DEAE-52 cellulose static absorption and desorption method was used. The polysaccharide concentration,adsorption time,adsorption temperature,rotate speed,elution time and eluent volume that influence the static adsorption and desorption of polysaccharide were selected and optimized.The optimal experimental conditions for static adsorption were determined as 40 mg/m L,90 min,30 ℃,120 r/min for sample concentration,adsorption time,adsorption temperature,and rotate speed,respectively. And the desorption effect was the best when eluted with 12 times volume of deionized water for 90 min and eluted with 11 times the volume of 0.2 mol/L Na Cl solution for 60 min.Under the optimized conditions,the concentration of polysaccharide in deionized water and 0.2 mol/L Na Cl elution polysaccharides were 0.56 mg/m L and 0.38 mg/m L,respectively. And,the two polysaccharides that were eluted were homogeneous distribution of polysaccharide components,which was consistent with the separation of DEAE-52 cellulose column chromatography in the previous experiment. Therefore,it is feasible to isolate and purify the polysaccharides of Inonotus obliquus by DEAE-52 cellulose static method.
引文
[1]Shin YS,Tamai Y,Terazawa M.Chemical constituents of Inonotus obliquus I,A triterpene,3β-hydroxy-8,24-dime lanosta21,23 lacton of romscretium[J].Eurasian Journal of Forest Research,2000(1):43-50.
    [2]刘迎秋,包海鹰.桦褐孔菌Inonotusn obliquus化学成分及药理作用[J].中国食用菌,2008,27(4):34-39.
    [3]陈义勇,黄友如,刘晶晶,等.桦褐孔菌多糖IOP3a体内抗肿瘤活性及其机制[J].食品与生物技术学报,2013,32(9):983-988.
    [4]Zhao F,Mai Q,Ma J,et al.Triterpenoids from Inonotus obliquus and their antitumor activities[J].Fitoterapia,2015,101:34-40.
    [5]张丽霞,张伟娜,李凌智,等.不同提取方法对桦褐孔菌多糖抗氧化活性的影响[J].安徽农业科学,2012,40(10):5870-5872.
    [6]Hu Y,Sheng Y,Yu M,et al.Antioxidant activity of Inonotus obliquus polysaccharide and its amelioration for chronic pancreatitis in mice.[J].International Journal of Biological Macromolecules,2016,87:348.
    [7]崔鹤松,金光.桦褐孔菌多糖对实验性高脂血症模型大鼠血脂的影响[J].延边大学医学学报,2007,30(3):173-174.
    [8]Chen G,Luo Y C,Li B P,et al.Effect of polysaccharide from Auricularia auricula on blood lipid metabolism and lipoprotein lipase activity of ICR mice fed a cholesterol-enriched diet[J].Journal of Food Science,2010,73(6):H103-H108.
    [9]张泽生,杨超慧,史砷,等.桦褐孔菌多糖对小鼠免疫调节作用的影响[J].食品研究与开发,2008,29(7):35-37.
    [10]Fan L,Ding S,Ai L,et al.Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus[J].Carbohydrate Polymers,2012,90(2):870-4.
    [11]Hu T.Isolation,purification and effects of hypoglycemic functional polysaccharides from Inonotus obliquus[J].African Journal of Biotechnology,2012,11(30):7738-7743.
    [12]李翠丽,王炜,张英,等.中药多糖提取、分离纯化方法的研究进展[J].中国药房,2016,27(19):2700-2703.
    [13]王博,斯聪聪,程国才.响应面优化超滤膜分离灵芝多糖工艺[J].食品工业,2015(12):1-4.
    [14]江新凤,高其璋,杨普香,等.乙醇沉淀法提取茶花多糖的研究[J].蚕桑茶叶通讯,2013(5):31-33.
    [15]戚跃明,陈涛.紫芝胞外多糖分离纯化及抗氧化性的研究[J].食品工业科技,2013,34(4):105-108.
    [16]任海伟,陈海秀,唐学慧,等.大孔树脂纯化薏苡多糖的研究[J].食品工业科技,2012,33(3):249-251.
    [17]景永帅,张丹参,吴兰芳,等.荔枝低分子量多糖的分离纯化及抗氧化吸湿保湿性能分析[J].农业工程学报,2016,32(9):277-283.
    [18]张岩,马丽娜,陶遵威.中药多糖的分离纯化方法研究进展[J].天津药学,2011,23(3):72-74.
    [19]李翠丽,王炜,张英,等.中药多糖提取、分离纯化方法的研究进展[J].中国药房,2016,27(19):2700-2703.
    [20]姜绍通,汪洪普,潘丽军.芋头多糖的分离纯化及对细胞免疫的调节作用[J].食品科学,2013,34(19):287-292.
    [21]Meng M,Cheng D,Han L,et al.Isolation,purification,structural analysis and immunostimulatory activity of watersoluble polysaccharides from Grifola Frondosa fruiting body[J].Carbohydrate Polymers,2016,157:1134.
    [22]王丽.桦褐孔菌降血糖多糖的分离纯化与α-葡萄糖苷酶抑制活性研究[D].北京:中国农业大学,2016.
    [23]刘璐,乔宇,汪兰,等.山药多糖的抗氧化作用研究[J].食品科技,2014(12):212-216.
    [24]李敏晶,毛婕昕,付荣香.DEAE-纤维素分离提纯海带硫酸多糖的研究[J].广东化工,2010,37(9):30-31.
    [25]金鑫,赖凤英.仙人掌多糖的提取、分离纯化及GPC法测定其分子量[J].现代食品科技,2006,22(2):138-140.
    [26]许素新,刘廷岳.离子交换纤维对桑叶多糖静态吸附和解吸的研究[J].时珍国医国药,2011,22(8):1943-1945.
    [27]任爱农.野菊花多糖的提取分离、免疫活性研究及分子量测定[D].镇江:江苏大学,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700