肩关节前向不稳中骨缺损诊断技术及评估方法的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Current concepts of diagnostic techniques and measurement methods for bone defect in patient with anterior shoulder instability
  • 作者:潘正烽 ; 黄富国 ; 李箭 ; 唐新
  • 英文作者:PAN Zhengfeng;HUANG Fuguo;LI Jian;TANG Xin;Department of Orthopaedics, West China Hospital, Sichuan University;
  • 关键词:肩关节前向不稳 ; 骨缺损 ; 诊断技术 ; 测量方法
  • 英文关键词:Anterior shoulder instability;;bone defect;;diagnostic technology;;measurement technology
  • 中文刊名:ZXCW
  • 英文刊名:Chinese Journal of Reparative and Reconstructive Surgery
  • 机构:四川大学华西医院骨科;
  • 出版日期:2019-05-08 10:24
  • 出版单位:中国修复重建外科杂志
  • 年:2019
  • 期:v.33
  • 基金:四川省科技厅重大项目(2018SZ0237、2017SZ0017)~~
  • 语种:中文;
  • 页:ZXCW201906020
  • 页数:6
  • CN:06
  • ISSN:51-1372/R
  • 分类号:110-115
摘要
目的总结临床肩关节前向不稳中骨缺损(肩胛盂前缘骨缺损及Hill-Sachs损伤)的诊断及测量方法。方法查阅国内外肩关节前向不稳中骨缺损诊断及评估方法的相关文献,并进行归纳总结。结果临床上用于诊断肩胛盂前缘骨缺损及Hill-Sachs损伤的技术主要包括X线片、CT、MRI、关节镜及关节造影。肩胛盂前缘骨缺损测量方法包括Griffith法、肩胛盂指数法、Pico法、画圆法等;Hill-Sachs损伤主要通过测量其长度、宽度、深度、体积等进行评价。X线片主要用于初步筛查肩关节前向不稳;三维CT画圆的线性法是评价肩胛盂前缘骨缺损最常用方法;基于三维CT的肩胛盂轨迹综合评估法是近年研究热点;MRI及关节镜下测量肩胛盂前缘骨缺损及Hill-Sachs损伤大小的可靠性尚有争议;关节造影技术更多用于诊断肩关节前向不稳中的骨缺损及伴随的软组织损伤。结论如何提高肩关节前向不稳术前骨缺损评估的精准度尚需进一步探索。
        Objective To summarize the diagnosis and measurement methods of bone defect in anterior shoulder instability(glenoid bone defect and Hill-Sachs lesion). Methods The related literature on the diagnosis and measurement of the bone defect in anterior shoulder instability was reviewed and summarized. Results The commonly used techniques for the diagnosis of anterior glenoid bone defect and Hill-Sachs lesion of humeral head include X-ray, CT,MRI, arthroscopy, arthrography. The methods for measuring the degree of anterior glenoid bone defect include Griffith method, glenoid index method, Pico method, and best-fit circle method. The indexes for measuring the Hill-Sachs lesion include the length, width, depth, and volume. X-ray is mainly used for primary screening. Best-fit circle method on threedimensional(3 D) CT reconstruction is commonly used to measure the glenoid bone defect currently. Glenoid track theory on 3 D CT reconstruction is popular in recent years. Reliability of measuring the glenoid bone defect and Hill-Sachs lesion with MRI and arthroscopy is still debatable. Arthrography is more and more used in the diagnosis of shoulder joint instability of bone defect and concomitant soft tissue injury. Conclusion How to improve the accuracy of evaluating glenoid bone defect and Hill-Sachs lesion before surgery still need further study.
引文
1 Cutts S, Prempeh M, Drew S. Anterior shoulder dislocation. Ann R Coll Surg Engl, 2009, 91(1):2-7.
    2 Assuncao JH, Gracitelli ME, Borgo GD, et al. Tomographic evaluation of Hill-Sachs lesions:is there a correlation between different methods of measurement? Acta Radiol, 2017, 58(1):77-83.
    3 Yiannakopoulos CK,Mataragas E,Antonogiannakis E. A comparison of the spectrum of intra-articular lesions in acute and chronic anterior shoulder instability. Arthroscopy, 2007, 23(9):985-990.
    4 Nakagawa S, Ozaki R, Take Y, et al. Relationship between glenoid defects and Hill-Sachs lesions in shoulders with traumatic anterior instability. Am J Sports Med, 2015,43(11):2763-2773.
    5 Cho SH, Cho NS, Rhee YG. Preoperative analysis of the Hill-Sachs lesion in anterior shoulder instability:how to predict engagement of the lesion. Am J Sports Med, 2011, 39(11):2389-2395.
    6 Rokous JR, Feagin JA,Abbott HG. Modified axillary roentgenogram. A useful adjunct in the diagnosis of recurrent instability of the shoulder. Clin Orthop Relat Res, 1972, 82:84-86.
    7 Itoi E, Lee SB, Amrami KK, et al. Quantitative assessment of classic anteroinferior bony Bankart lesions by radiography and computed tomography. Am J Sports Med, 2003, 31(1):112-118.
    8 Pansard E, Klouche S, Billot N, et al. Reliability and validity assessment of a glenoid bone loss measurement using the Bernageau profile view in chronic anterior shoulder instability. J Shoulder Elbow Surg, 2013, 22(9):1193-1198.
    9 Murachovsky J, Bueno RS, Nascimento LG, et al. Calculating anterior glenoid bone loss using the Bernageau profile view.Skeletal Radiol, 2012, 41(10):1231-1237.
    10 Saliken DJ, Bornes TD, Bouliane MJ, et al. Imaging methods for quantifying glenoid and Hill-Sachs bone loss in traumatic instability of the shoulder:a scoping review. BMC Musculoskelet Disord, 2015, 16:164.
    11 Danzig LA, Greenway G, Resnick D. The Hill-Sachs lesion. An experimental study. Am J Sports Med, 1980, 8(5):328-332.
    12 Kralinger FS, Golser K, Wischatta R, et al. Predicting recurrence after primary anterior shoulder dislocation. Am J Sports Med,2002,30(1):116-120.
    13 Bornes TD, Jaremko JL, Beaupre LA, et al. Radiographic sclerotic contour loss in the identification of glenoid bone loss. Knee Surg Sports Traumatol Arthrosc, 2016, 24(7):2167-2173.
    14 Chuang TY, Adams CR, Burkhart SS. Use of preoperative threedimensional computed tomography to quantify glenoid bone loss in shoulder instability. Arthroscopy, 2008, 24(4):376-382.
    15 Kubicka AM, Stefaniak J, Lubiatowski P, et al. Reliability of measurements performed on two dimensional and three dimensional computed tomography in glenoid assessment for instability. Int Orthop, 2016, 40(12):2581-2588.
    16 Bois AJ, Fening SD, Polster J, et al. Quantifying glenoid bone loss in anterior shoulder instability:reliability and accuracy of 2-dimensional and 3-dimensional computed tomography measurement techniques. Am J Sports Med, 2012, 40(11):2569-2577.
    17 Jeske HC, Oberthaler M, Klingensmith M, et al. Normal glenoid rim anatomy and the reliability of shoulder instability measurements based on intrasite correlation. Surg Radiol Anat,2009, 31(8):623-625.
    18 Griffith JF, Antonio GE, Tong CW, et al. Anterior shoulder dislocation:quantification of glenoid bone loss with CT. AJR Am J Roentgenol, 2003, 180(5):1423-1430.
    19 Griffith JF, Yung PS, Antonio GE, et al. CT compared with arthroscopy in quantifying glenoid bone loss. AJR Am J Roentgenol, 2007,189(6):1490-1493.
    20 De Wilde LF, Berghs BM, Audenaert E, et al. About the variability of the shape of the glenoid cavity. Surg Radiol Anat, 2004, 26(1):54-59.
    21 Huysmans PE, Haen PS, Kidd M, et al. The shape of the inferior part of the glenoid:a cadaveric study. J Shoulder Elbow Surg, 2006,15(6):759-763.
    22 Shin SJ, Kim RG, Jeon YS, et al. Critical value of anterior glenoid bone loss that leads to recurrent glenohumeral instability after arthroscopic Bankart repair. Am J Sports Med, 2017, 45(9):1975-1981.
    23 Hamamoto JT, Leroux T, Chahla J, et al. Assessment and evaluation of glenoid bone loss. Arthrosc Tech, 2016, 5(4):e947-e951.
    24 Sugaya H, Moriishi J, Kanisawa I, et al. Arthroscopic osseous Bankart repair for chronic recurrent traumatic anterior glenohumeral instability. J Bone Joint Surg(Am), 2005, 87(8):1752-1760.
    25 Sugaya H, Moriishi J, Dohi M, et al. Glenoid rim morphology in recurrent anterior glenohumeral instability. J Bone Joint Surg(Am), 2003, 85(A(5)):878-84.
    26 Huijsmans PE, Haen PS, Kidd M, et al. Quantification of a glenoid defect with three-dimensional computed tomography and magnetic resonance imaging:a cadaveric study. J Shoulder Elbow Surg,2007, 16(6):803-809.
    27 Baudi P, Righi P, Bolognesi D, et al. How to identify and calculate glenoid bone deficit. Chir Organi Mov, 2005, 90(2):145-152.
    28 Magarelli N, Milano G, Sergio P, et al. Intra-observer and interobserver reliability of the'Pico'computed tomography method for quantification of glenoid bone defect in anterior shoulder instability. Skeletal Radiol, 2009, 38(11):1071-1075.
    29 Bishop JY, Jones GL, Rerko MA, et al. 3-D CT is the most reliable imaging modality when quantifying glenoid bone loss. Clin Orthop Relat Res, 2013, 471(4):1251-1256.
    30 Barchilon VS, Kotz E, Barchilon Ben-Av M, et al. A simple method for quantitative evaluation of the missing area of the anterior glenoid in anterior instability of the glenohumeral joint. Skeletal Radiol, 2008, 37(8):731-736.
    31 Danzig L, Resnick D, Greenway G. Evaluation of unstable shoulders by computed tomography. A preliminary study. Am J Sports Med,1982, 10(3):138-141.
    32 Kodali P, Jones MH, Polster J, et al. Accuracy of measurement of Hill-Sachs lesions with computed tomography. J Shoulder Elbow Surg, 2011, 20(8):1328-1334.
    33 Saito H, Itoi E, Minagawa H, et al. Location of the Hill-Sachs lesion in shoulders with recurrent anterior dislocation. Arch Orthop Trauma Surg, 2009, 129(10):1327-1334.
    34 Ho A, Kurdziel MD, Koueiter DM, et al. Three-dimensional computed tomography measurement accuracy of varying HillSachs lesion size. J Shoulder Elbow Surg, 2018, 27(2):350-356.
    35 Greis PE, Scuderi MG, Mohr A, et al. Glenohumeral articular contact areas and pressures following labral and osseous injury to the anteroinferior quadrant of the glenoid. J Shoulder Elbow Surg,2002, 11(5):442-451.
    36 Burkhart SS, De Beer JF. Traumatic glenohumeral bone defects and their relationship to failure of arthroscopic Bankart repairs:significance of the inverted-pear glenoid and the humeral engaging Hill-Sachs lesion. Arthroscopy, 2000, 16(7):677-694.
    37 Yamamoto N, Itoi E, Abe H, et al. Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension:a new concept of glenoid track. J Shoulder Elbow Surg,2007,16(5):649-656.
    38 Omori Y, Yamamoto N, Koishi H, et al. Measurement of the glenoid track in vivo as investigated by 3-dimensional motion analysis using open MRI. Am J Sports Med, 2014, 42(6):1290-1295.
    39 Friedman LG, Ulloa SA, Braun DT, et al. Glenoid bone loss measurement in recurrent shoulder dislocation:Assessment of measurement agreement between CT and MRI. Orthop J Sports Med,2014, 2(9):2325967114549541.
    40 Gyftopoulos S, Hasan S, Bencardino J, et al. Diagnostic accuracy of MRI in the measurement of glenoid bone loss. AJR Am J Roentgenol, 2012,199(4):873-878.
    41 Stillwater L, Koenig J, Maycher B, et al. 3D-MR vs. 3D-CT of the shoulder in patients with glenohumeral instability. Skeletal Radiol,2017,46(3):325-331.
    42 Vopat BG, Cai W, Torriani M, et al. Measurement of glenoid bone loss with 3-dimensional magnetic resonance imaging:A matched computed tomography analysis. Arthroscopy, 2018, 34(12):3141-3147.
    43 Yanke AB, Shin JJ, Pearson I, et al. Three-dimensional magnetic resonance imaging quantification of glenoid bone loss is equivalent to 3-dimensional computed tomography quantification:cadaveric study. Arthroscopy, 2017, 33(4):709-715.
    44 Rerko MA, Pan X, Donaldson C, et al. Comparison of various imaging techniques to quantify glenoid bone loss in shoulder instability. J Shoulder Elbow Surg, 2013, 22(4):528-534.
    45 Franca FO, Godinho A, Ribeiro E, et al. New quantitative method to measure the Hill-Sachs lesion:validation of Hardy's radiographic method for MRI/AMRI. Rev Bras Ortop, 2018, 53(5):589-594.
    46 Tian CY, Shang Y, Zheng ZZ. Glenoid bone lesions:comparison between 3D VIBE images in MR arthrography and nonarthrographic MSCT. J Magn Reson Imaging, 2012, 36(1):231-236.
    47 Saqib R, Harris J, Funk L. Comparison of magnetic resonance arthrography with arthroscopy for imaging of shoulder injuries:retrospective study. Ann R Coll Surg Engl, 2017, 99(4):271-274.
    48 Kinsella SD, Chauvin NA, Diaz T, et al. Traumatic shoulder dislocation among adolescents:Hill-Sachs lesion volume and recurrent instability. J Pediatr Orthop, 2015, 35(5):455-461.
    49 Pavic R, Margetic P, Bensic M, et al. Diagnostic value of US, MR and MR arthrography in shoulder instability. Injury, 2013,44(Suppl 3):S26-S32.
    50 Acid S, Le Corroller T, Aswad R, et al. Preoperative imaging of anterior shoulder instability:diagnostic effectiveness of MDCT arthrography and comparison with MR arthrography and arthroscopy. AJR Am J Roentgenol, 2012,198(3):661-667.
    51 Burkhart SS, Debeer JF, Tehrany AM, et al. Quantifying glenoidbone loss arthroscopically in shoulder instability. Arthroscopy,2002,18(5):488-491.
    52 Bakshi NK, Patel I, Jacobson JA, et al. Comparison of 3-dimensional computed tomography-based measurement of glenoid bone loss with arthroscopic defect size estimation in patients with anterior shoulder instability. Arthroscopy, 2015, 31(10):1880-1885.
    53 Gyftopoulos S, Beltran LS, Yemin A, et al. Use of 3D MR reconstructions in the evaluation of glenoid bone loss:a clinical study. Skeletal Radiol, 2014, 43(2):213-218.
    54 Kralinger F, Aigner F, Longato S, et al. Is the bare spot a consistent landmark for shoulder arthroscopy? A study of 20 embalmed glenoids with 3-dimensional computed tomographic reconstruction. Arthroscopy, 2006, 22(4):428-432.
    55 Miyatake K, Takeda Y, Fujii K, et al. Validity of arthroscopic measurement of glenoid bone loss using the bare spot. Open Access J Sports Med, 2014, 5:37-42.
    56 Saintmard B, Lecouvet F, Rubini A, et al. Is the bare spot a valid landmark for glenoid evaluation in arthroscopic Bankart surgery?Acta Orthop Belg, 2009, 75(6):736-742.
    57 Provencher MT, Detterline AJ, Ghodadra N, et al. Measurement of glenoid bone loss:a comparison of measurement error between 45degrees and 0 degrees bone loss models and with different posterior arthroscopy portal locations. Am J Sports Med, 2008,36(6):1132-1138.
    58 Fox JA, Sanchez A, Zajac TJ, et al. Understanding the Hill-Sachs lesion in its role in patients with recurrent anterior shoulder instability. Curr Rev Musculoskelet Med, 2017, 10(4):469-479.
    59 Bueno RS, Ikemoto RY, Nascimento LG, et al. Correlation of coracoid thickness and glenoid width:an anatomic morphometric analysis. Am J Sports Med, 2012, 40(7):1664-1667.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700