Effect of ultrasonic vibration-assisted laser surface melting and texturing of Ti-6Al-4V ELI alloy on surface properties
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of ultrasonic vibration-assisted laser surface melting and texturing of Ti-6Al-4V ELI alloy on surface properties
  • 作者:Sourabh ; Biswas ; S.Habib ; Alavi ; Bhishma ; Sedai ; Frank ; D.Blum ; Sandip ; P.Harimkar
  • 英文作者:Sourabh Biswas;S.Habib Alavi;Bhishma Sedai;Frank D.Blum;Sandip P.Harimkar;School of Mechanical and Aerospace Engineering,Oklahoma State University;Department of Chemistry,Oklahoma State University;
  • 英文关键词:Laser texturing;;Laser melting;;Ultrasonic vibrations;;Wear
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:School of Mechanical and Aerospace Engineering, Oklahoma State University;Department of Chemistry, Oklahoma State University;
  • 出版日期:2019-02-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by the U.S. National Science Foundation (NSF CAREER Award No. CMMI-1149079)
  • 语种:英文;
  • 页:CLKJ201902006
  • 页数:8
  • CN:02
  • ISSN:21-1315/TG
  • 分类号:69-76
摘要
Ultrasonic vibration-assisted laser surface processing that involves application of vertical ultrasonic vibrations to the Ti-6 Al-4 V alloy substrates while being irradiated with a CO_2 laser was performed for the development of laser melted and textured surfaces with potential applications in biomedical implants.The laser processing resulted in very consistent repeating undulating grooved surfaces, and the undulations were significantly more pronounced in the samples processed with higher ultrasonic power outputs.The phase evolution, studied by x-ray diffraction, confirmed that the laser processing triggered transformation of globular α→ acicular α and martensitic α' as well as increased amounts of retained α phases,which were also reflected in the microscopic analysis. The surface texture developed by laser processing resulted in increased surface wettability with increasing ultrasonic power output. The textured surfaces exhibited marked decrease in coefficients of friction during sliding wear testing performed under simulated body fluid due to lubricant entrainment within the textured grooves. The texturing also resulted in significant reduction in surface contact area during the wear process, which considerably reduced the overall wear rates due to abrasive wear.
        Ultrasonic vibration-assisted laser surface processing that involves application of vertical ultrasonic vibrations to the Ti-6 Al-4 V alloy substrates while being irradiated with a CO_2 laser was performed for the development of laser melted and textured surfaces with potential applications in biomedical implants.The laser processing resulted in very consistent repeating undulating grooved surfaces, and the undulations were significantly more pronounced in the samples processed with higher ultrasonic power outputs.The phase evolution, studied by x-ray diffraction, confirmed that the laser processing triggered transformation of globular α→ acicular α and martensitic α' as well as increased amounts of retained α phases,which were also reflected in the microscopic analysis. The surface texture developed by laser processing resulted in increased surface wettability with increasing ultrasonic power output. The textured surfaces exhibited marked decrease in coefficients of friction during sliding wear testing performed under simulated body fluid due to lubricant entrainment within the textured grooves. The texturing also resulted in significant reduction in surface contact area during the wear process, which considerably reduced the overall wear rates due to abrasive wear.
引文
[1] I.J. Polmear, Light Alloys from Traditional Alloys to Nanocrystals,Elsevier/Butterworth-Heinemann, Oxford; Burlington, MA, 2006.
    [2] P. Jiang, X. He, X.A. Li, L. Yu, H. Wang, Surf. Coat. Technol. 130(2000)24–28.
    [3] F. Weng, H. Yu, C. Chen, J. Liu, L. Zhao, J. Dai, Z. Zhao, J. Alloys. Compd. 692(2017)989–996.
    [4] M.A. Lopez-Heredia, P. Weiss, P. Layrolle, J. Mater. Sci. Mater. Med. 18(2007)381–390.
    [5] X. Zhou, C. Ouyang, Appl. Surf. Sci. 405(2017)476–488.
    [6] F. Weng, H. Yu, J. Liu, C. Chen, J. Dai, Z. Zhao, Opt. Laser Technol. 92(2017)156–162.
    [7] C.W. Chan, S. Lee, G.C. Smith, C. Donaghy, Surf. Coat. Technol. 309(2017)628–640.
    [8] A. Kurella, N.B. Dahotre, J. Biomater. Appl. 20(2005)5–50.
    [9] R. Casati, J. Lemke, M. Vedani, J. Mater. Sci. Technol. 32(2016)738–744.
    [10] C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, M.M. Attallah, Acta Mater. 96(2015)72–79.
    [11] B. Vrancken, L. Thijs, J.P. Kruth, J. Van Humbeeck, Acta Mater. 68(2014)150–158.
    [12] H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, G.P. Zhang, J. Mater. Sci. Technol. 34(2018), 1979–1804.
    [13] N. Makuch, M. Kulka, P. Dziarski, D. Przestacki, Opt. Lasers Eng. 57(2014)64–81.
    [14] C.W. Chan, S. Lee, G. Smith, G. Sarri, C.H. Ng, A. Sharba, H.C. Man, Appl. Surf.Sci. 367(2016)80–90.
    [15] A.M. Kamat, S.M. Copley, J.A. Todd, Acta Mater. 107(2016)72–82.
    [16] R. Sun, Y. Lei, W. Niu, Surf. Eng. 25(2009)206–210.
    [17] H. Wang, Y. Liu, Mater. Sci. Eng. A 338(2002)126–132.
    [18] Y. Tian, C. Chen, L. Chen, Q. Huo, Mater. Lett. 60(2006)109–113.
    [19] X. He, J. Noel, D. Shoesmith, Corrosion 60(2004)378–386.
    [20] M.A.H. Gepreel, M. Niinomi, J. Mech. Behav. Biomed. Mater. 20(2013)407–415.
    [21] M. Geetha, A. Singh, R. Asokamani, A. Gogia, Prog. Mater. Sci. 54(2009)397–425.
    [22] S.C. Vl?adescu, A.V. Olver, I.G. Pegg, T. Reddyhoff, Wear 358(2016)51–61.
    [23] T. Ibatan, M. Uddin, M. Chowdhury, Surf. Coat. Technol. 272(2015)102–120.
    [24] A.F. Shamsul Baharin, M.J. Ghazali, J.A. Wahab, Ind. Lubr. Tribol. 68(2016)57–66.
    [25] X. Wang, K. Kato, Tribol. Lett. 14(2003)275–280.
    [26] R. Ranjan, D. Lambeth, M. Tromel, P. Goglia, Y. Li, J. Appl. Phys. 69(1991)5745–5747.
    [27] R. Kumari, T. Scharnweber, W. Pfleging, H. Besser, J.D. Majumdar, Appl. Surf.Sci. 357(2015)750–758.
    [28] S.H. Alavi, S.P. Harimkar, Ultrasonics 59(2015)21–30.
    [29] S.H. Alavi, S.P. Harimkar, Manuf. Lett. 4(2015)1–5.
    [30] S. Biswas, S. Alavi, S. Harimkar, J. Comp. Sci. 1(2017)13.
    [31] S. Biswas, S.H. Alavi, S.P. Harimkar, Mater. Lett. 159(2015)470–473.
    [32] Y. Arima, H. Iwata, Biomaterials 28(2007)3074–3082.
    [33] R. Pederson, Microstructure and Phase Transformation of Ti-6Al-4V, Lule?tekniska universitet, 2002.
    [34] Y. Prasad, T. Seshacharyulu, S. Medeiros, W. Frazier, J. Eng. Mater. Technol.123(2001)355–360.
    [35] B.G. Loh, S. Hyun, P.I. Ro, C. Kleinstreuer, J. Acoust. Soc. Am. 111(2002)875–883.
    [36] S. Hyun, D.R. Lee, B.G. Loh, Int. J. Heat Mass Transf. 48(2005)703–718.
    [37] R.K. Gould, J. Acoust. Soc. Am. 40(1966)219–225.
    [38] M. Imam, C. Gilmore, Metall. Trans. A 14(1983)233–240.
    [39] Y. Prasad, T. Seshacharyulu, S. Medeiros, W. Frazier, J. Mater. Proc. Technol.108(2001)320–327.
    [40] I. Weiss, S. Semiatin, Mater. Sci. Eng. A 263(1999)243–256.
    [41] T. Ahmed, H. Rack, Mater. Sci. Eng. A 243(1998)206–211.
    [42] L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, Acta Mater. 58(2010)3303–3312.
    [43] T. Uelzen, J. Müller, Thin Solid Films 434(2003)311–315.
    [44] L. Hao, J. Lawrence, J. Mater. Sci. Mater. Med. 18(2007)807–817.
    [45] L. Hao, J. Lawrence, L. Li, Appl. Surf. Sci. 247(2005)602–606.
    [46] P.M. Barkhudarov, P.B. Shah, E.B. Watkins, D.A. Doshi, C.J. Brinker, J. Majewski,Corros. Sci. 50(2008)897–902.
    [47] M. Jovanovi′c, S. Tadi′c, S. Zec, Z. Miˇskovi′c, I. Bobi′c, Mater. Des. 27(2006)192–199.
    [48] N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, J. Alloys. Compd. 486(2009)162–167.
    [49] K. Hokkirigawa, K. Kato, Tribol. Int. 21(1988)51–57.
    [50] K.G. Budinski, Wear 151(1991)203–217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700