Synergistic Flame-retardant Effect of Epoxy Resin Combined with Phenethyl-bridged DOPO Derivative and Graphene Nanosheets
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synergistic Flame-retardant Effect of Epoxy Resin Combined with Phenethyl-bridged DOPO Derivative and Graphene Nanosheets
  • 作者:Wei ; Yan ; Ming-Qiu ; Zhang ; Jie ; Yu ; Sheng-Qiang ; Nie ; Dai-Qin ; Zhang ; Shu-Hao ; Qin
  • 英文作者:Wei Yan;Ming-Qiu Zhang;Jie Yu;Sheng-Qiang Nie;Dai-Qin Zhang;Shu-Hao Qin;School of Chemistry, Sun Yat-sen University;School of Chemistry and Materials Engineering, Guiyang University;National Engineering Research Center for Compounding and Modification of Polymer Materials;
  • 英文关键词:Epoxy resin;;DOPO derivative;;GNS;;Flame retardancy
  • 中文刊名:GFZK
  • 英文刊名:高分子科学(英文版)
  • 机构:School of Chemistry, Sun Yat-sen University;School of Chemistry and Materials Engineering, Guiyang University;National Engineering Research Center for Compounding and Modification of Polymer Materials;
  • 出版日期:2019-01-15
  • 出版单位:Chinese Journal of Polymer Science
  • 年:2019
  • 期:v.37
  • 基金:financially supported by the special funding of Guiyang Science and Technology Bureau and Guiyang University (No. GYU-KYZ201803-1);; Major Construction Project of Firstrate University in Guizhou Provice (No. 2017158134)
  • 语种:英文;
  • 页:GFZK201901011
  • 页数:10
  • CN:01
  • ISSN:11-2015/O6
  • 分类号:91-100
摘要
Phenethyl-bridged DOPO derivative(DiDOPO)was combined with graphene nanosheets(GNSs)in epoxy resin(EP)to improve its flame retardancy.The results indicated that the introduction of only 1.5 wt%DiDOPO/1.5 wt%GNS in EP increased the limited oxygen index(LOI)from 21.8%to 32.2%,hence meeting UL 94 V-0 rating.The thermogravimetric analyses revealed that char yield rose in presence of GNSs to form thermally stable carbonaceous char.The decomposition and pyrolysis products in gas phase were characterized by thermogravimetry-Fourier transform infrared spectroscopy(TG-FTIR),and the release of large amounts of phosphorus was detected in the gas phase.The evaluation of flame-retardant effect by cone calorimetry demonstrated that GNSs improved the protective-barrier effect of fire residue of EP/DiDOPO/GNS.The latter was further confirmed by digital photography and scanning electron microscopy(SEM).Also,Raman spectroscopy showed that GNSs enhanced graphitization degree of the resin during combustion.Overall,the combination of DiDOPO with GNSs provides an effective way for developing high-performance resins with improved flame retardancy.
        Phenethyl-bridged DOPO derivative(DiDOPO)was combined with graphene nanosheets(GNSs)in epoxy resin(EP)to improve its flame retardancy.The results indicated that the introduction of only 1.5 wt%DiDOPO/1.5 wt%GNS in EP increased the limited oxygen index(LOI)from 21.8%to 32.2%,hence meeting UL 94 V-0 rating.The thermogravimetric analyses revealed that char yield rose in presence of GNSs to form thermally stable carbonaceous char.The decomposition and pyrolysis products in gas phase were characterized by thermogravimetry-Fourier transform infrared spectroscopy(TG-FTIR),and the release of large amounts of phosphorus was detected in the gas phase.The evaluation of flame-retardant effect by cone calorimetry demonstrated that GNSs improved the protective-barrier effect of fire residue of EP/DiDOPO/GNS.The latter was further confirmed by digital photography and scanning electron microscopy(SEM).Also,Raman spectroscopy showed that GNSs enhanced graphitization degree of the resin during combustion.Overall,the combination of DiDOPO with GNSs provides an effective way for developing high-performance resins with improved flame retardancy.
引文
1 Martins, M. S. S.; Schartel, B.; Magalhaes, Fernao, D.; Pereira,C. M. C. The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater. 2016, 301, 9-35.
    2 Zhang, X.; He, Q.; Gu, H.; Colorado, H. A.; Wei, S.; Guo, Z.Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Appl. Mater. Interfaces 2013, 5, 898-910.
    3 Rakotomalala, M.; Wagner, S.; Doring, M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials 2010, 3,4300-4327.
    4 Zhuang, R. C.; Yang, J.; Wang, D. Y.; Huang, Y. X. Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate. RSC Adv. 2015, 5, 100049-100053.
    5 Wang, X.; Kalali, E. N.; Wang, D. Y. Renewable cardanolbased surfactant modified layered double hydroxide as a flame retardant for epoxy resin. ACS Sustain. Chem. Eng. 2015, 3,3281-3290.
    6 Zotti,A.; Borriello, A.; Ricciardi,M.; Antonucci,V.; Giordano,M.; Zarrelli, M. Effects of sepiolite clay on degradation and fire behavior of a bisphenol A-based epoxy. Compos. Part B:Eng.2015, 73, 139-148.
    7 Deng, L. L.; Shen, M. M.; Yu, J.; Wu, K.; Ha, C. Y. Preparation, characterization, and flame retardancy of novel rosinbased siloxane epoxy resins. Ind. Eng. Chem. Res. 2012, 51,8178-8184.
    8 Zang, L.; Wagner, S.; Ciesielski, M.; Muller, P.; Doring, M.Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polym. Adv. Technol. 2011,22, 1182-1191.
    9 Long, L. J.; Yin, J. B.; He, W. T.; Qin, S. H.; Yu, J. Influence of a phenethyl-bridged DOPO derivative on the flame retardancy, thermal properties, and mechanical properties of poly(lactic acid). Ind. Eng. Chem. Res. 2016, 55, 10803-10812.
    10 Chang, Q. F.; Long, L. J.; He, W. T.; Qin, S. H.; Yu, J. Thermal degradation behavior of PLA composites containing bis DOPO phosphonates. Thermochim. Acta 2016, 639, 84-90.
    11 Meenakshi, K. S.; Sudhan, E. P. J.; Kumar, S. A.; Umapathy,M. J. Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications.Prog. Org.Coat. 2011,72, 402-409.
    12 Zhang, W. C.; Li, X. M.; Yang, R. J. Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. Polym. Degrad. Stab. 2012,97, 1314-1324.
    13 Wang, T.; Wang, J.; Huo, S. Q.; Zhang, B.; Yang, S. Preparation and flame retardancy of DOPO-based epoxy resin containing bismaleimide. High. Perform. Polym. 2016, 28, 1090-1095.
    14 Kiliaris, P.; Papaspyrides, C. D. Polymer/layered silicate(clay)nanocomposites:An overview of flame retardancy. Prog.Polym. Sci. 2010, 35, 902-958.
    15 Martino, L.; Guigo, N.; Van Berkel, J. G.; Sbirrazzuoli, N.Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Compos. Part B:Eng. 2017, 110,96-105.
    16 Wang, D.; Zhou, K. Q.; Yang, W.; Xing, W. Y,; Hu, Y.; Gong,X. L. Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res. 2013,52, 17882-17890.
    17 Li, P. P.; Zheng, Y. P.; Li, M. Z.; Fan, W. D.; Shi, T.; Wang, Y.D.; Zhang, A. B.; Wang, J. S. Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Compos. Part A:Appl. S. 2016, 81,172-181.
    18 Sang,B.; Li,Z. W.; Li, X. H.; Yu,L. G.; Zhang,Z. J.Graphene-based flame retardants:A review. J. Mater. Sci:2016, 51,8271-8295.
    19 Wang, Z.; Tang, X. Z.; Yu, Z. Z.; Guo, P.; Song, H. H.; Du, X.S. Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chinese J. Polym. Sci. 2011,29, 368-376.
    20 Liu, S.; Yan, H. Q.; Fang, Z. P.; Wang, H. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos. Sci. Technol.2014, 90, 40-47.
    21 Liu, S.; Fang, Z. P.; Yan, H. Q.; Wang, H. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO. RSC Adv. 2016, 6, 5288-5295.
    22 Liu, S.; Fang, Z. P.; Yan, H. Q.; Chevali, V. S.; Wang, H. Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos. Part A:Appl. S.2016, 89, 26-32.
    23 Huang, W. J.; He,W. T.; Long,L. J.; Yan,W.; He, M.; Qin,S.H.; Yu, J. Highly efficient flame-retardant glass-fiber-reinforced polyamide 6T system based on a novel DOPO-based derivative:Flame retardancy, thermal decomposition, and pyrolysis behavior. Polym. Degrad. Stab. 2018, 148, 26-41.
    24 Yan, W.; Yu, J.; Zhang, M. Q.; Qin, S. H.; Wang, T.; Huang,W. J.; Long, L. J. Flame-retardant effect of a phenethyl-bridged DOPO derivative and layered double hydroxides for epoxy resin. RSCAdv. 2017, 7, 46236-46245.
    25 Yao, Q.; Wang,J.; Mack, A. G. 2015, U.S. Pat.,9,012,546
    26 Wang,X.; Hu.Y.; Song,L.; Xing,W. Y.; Lu,H. D.;Lv,P.; Jie,G. X. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51, 2435-2445.
    27 Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R.H. J.; Shields, J. R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 2005, 4,928-933.
    28 Qiu, Y.; Qian, L. J.; Xi, W. Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour. RSC Adv. 2016, 6,56018-56027.
    29 Buczko, A.; Stelzig, T.; Bommer, L.; Rentsch, D.;Heneczkowski, M.; Gaan,S. Bridged DOPO derivatives as flame retardants for PA6. Polym. Degrad. Stab. 2014, 107,158-165.
    30 Wang, J. Y.; Qian, L. J.; Huang, Z. G.; Fang, Y. Y.; Qiu, Y.Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym. Degrad. Stab. 2016, 130,173-181.
    31 Brehme, S.; Schartel, B.; Goebbels, J.; Fischer, O.; Pospiech,D.; Bykov, Y.; Doring, M. Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate)(PBT):Flame retardancy performance and mechanisms. Polym. Degrad.Stab. 2011, 96, 875-884.
    32 Tang, S.; Wachtendorf, V.; Klack, P.; Qian, L. J.; Dong, Y. P.;Schartel, B. Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset.RSC Adv. 2017, 7, 720-728.
    33 Brehme, S.; Koppl, T.; Schartel, B.; Altstadt, V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate)and its glass-fibre composites. ePolymers 2014, 14, 193-208.
    34 Xu, W. H.; Wirasaputra, A.; Liu, S. M.; Yuan, Y. C.; Zhao, J.Q. Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym. Degrad. Stab. 2015, 122,44-51.
    35 Schartel, B.; Perret; B.; Dittrich, B.; Ciesielski, M.; Kramer, J.;Muller, P.; Altstadt, V.; Zang, L.; During, M. Flame retardancyof polymers:The role of specific reactions in the condensed phase. MacromoL Mater. Eng. 2016, 301, 9-35.
    36 Brehme,S.; K6ppl,T.; Schartel,B.; Fischer,O.; Altstadt,V.;Pospiech, D.; During, M. Phosphorus polyester-an alternative to low-molecular-weight flame retardants in poly(butylene terephthalate)? MacromoL Chem. Phys. 2012, 213, 2386-2397.
    37 Perret,B.; Schartel,B.; Stoβ, K.; Ciesielski,M.; Diederichs, J.;Doring, M.; Kramer, J.; Altstadt, V. A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries. Macromol.Mater. Eng. 2011, 296, 14-30.
    38 Qian, X. D.; Song, L.; Yu, B.; Wang,B. B.; Yuan, B. H.; Shi,Y. Q.; Hu, Y.; Yuen, R. K. K. Novel organic-inorganic flame retardants containing exfoliated graphene:Preparation and their performance on the flame retardancy of epoxy resins. J. Mater.Chem. A 2013, 1, 6822-6830.
    39 Wang, X.; Hu, Y.; Song, L.; Xing, W. Y.; Lu, H. D. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J. Anal.Appl.Pyrol. 2011, 92, 164-170.
    40 Zhang, W. C.; Li, X. M.; Li, L. M.; Yang, R. J. Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites.-Polym. Degrad. Stab. 2012,97, 1041-1048.
    41 Li, Z. Q.; Yang, R. J. Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flameretarded epoxy resins. Polym. Degrad. Stab. 2014, 109,233-239.
    42 Wawrzyn,E.; Schartel,B.; Seefeldt,H.; Karrasch, A.; Jager,C.What reacts with what in bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosph,ate)during pyrolysis and fire behavior? Ind. Eng. Chem. Res. 2012, 51, 1244-1255.
    43 Schartel,B.; Balabanovich,A. I.; Braun, U.; Knoll,U.; Artner,J.; Ciesielski, M.; During, M.; Perez, R.; Sandler, J. K. W.;Altstadt, V.; Hoffmann, T.; Pospiech, D. Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. J. Appl. Polym. Sci. 2007,104, 2260-2269.
    44 Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite. J.Chem. Phys. 1970, 53, 1126-1130.
    45 Tuinstra, F.; Koenig, J. L. Characterization of graphite fiber surfaces with raman spectroscopy. J. Compos. Mater. 1970, 4,492-499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700