Influence of calcination temperature for LaTi_(0.2)Fe_(0.8)O_3 on catalytic pyrolysis of bagasse lignin
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of calcination temperature for LaTi_(0.2)Fe_(0.8)O_3 on catalytic pyrolysis of bagasse lignin
  • 作者:Haiying ; Wang ; Hongjing ; Han ; Yanan ; Zhang ; Jinxin ; Li ; Yanguang ; Chen ; Hua ; Song ; Enhao ; Sun ; Hongzhi ; Zhao ; Mei ; Zhang ; Dandan ; Yuan
  • 英文作者:Haiying Wang;Hongjing Han;Yanan Zhang;Jinxin Li;Yanguang Chen;Hua Song;Enhao Sun;Hongzhi Zhao;Mei Zhang;Dandan Yuan;College of Chemistry & Chemical Engineering,Northeast Petroleum University;Provincial Key Laboratory of Oil & Gas Chemical Technology;Daqing Petrochemical Research Center,Petrochina;
  • 英文关键词:Bagasse lignin;;Perovskite;;Catalytic pyrolysis;;Calcination temperature;;Aryl oxygen-containing compounds;;Rare earths
  • 中文刊名:YXTB
  • 英文刊名:稀土学报(英文版)
  • 机构:College of Chemistry & Chemical Engineering,Northeast Petroleum University;Provincial Key Laboratory of Oil & Gas Chemical Technology;Daqing Petrochemical Research Center,Petrochina;
  • 出版日期:2019-07-17
  • 出版单位:Journal of Rare Earths
  • 年:2019
  • 期:v.37
  • 基金:Project supported by the National Natural Science Foundation of China(51674089);; Heilongjiang Provincial Science Fund for Distinguished Youth Scholar(JC2018002);; Postdoctoral Scientific Research Development Fund of Heilongjiang Province(LBH-Q16037);; Postgraduate Innovative Research Projects of Northeast Petroleum University(YJSCX2017-014NEPU)
  • 语种:英文;
  • 页:YXTB201908007
  • 页数:8
  • CN:08
  • ISSN:11-2788/TF
  • 分类号:55-62
摘要
LaTi_(0.2)Fe_(0.8)O_3(LTF)was prepared by the sol-gel method,and the effects of calcination temperature on the structure and properties were investigated,A new method of preparing aryl oxygen-containing compounds from bagasse lignin(BL)by the catalytic pyrolysis over LTF was proposed.The results show that LTF has cubic crystal phase and porous structure and its optimal calcination temperature is 800 ℃(LTF-800).In the test for catalytic pyrolysis of BL,with the addition of LTF-800,the yield of liquid product reaches the maximum; the contents of phenolics,guaiacols,syringols,phenylates and furans increase obviously,while those of benzenes,esters and carboxylic acid decrease.The total content of aryl oxygencompounds(including phenolics,guaiacols,syringols and phenylates)in liquid product is more than 74 wt%with the addition of LTF-800,larger than that obtained by single BL pyrolysis(62 wt%).LTF could avoid oxygen-containing functional groups from being excessively destroyed.It has nice regeneration performance by controlled combustion of char even after 5 cycles.
        LaTi_(0.2)Fe_(0.8)O_3(LTF)was prepared by the sol-gel method,and the effects of calcination temperature on the structure and properties were investigated,A new method of preparing aryl oxygen-containing compounds from bagasse lignin(BL)by the catalytic pyrolysis over LTF was proposed.The results show that LTF has cubic crystal phase and porous structure and its optimal calcination temperature is 800 ℃(LTF-800).In the test for catalytic pyrolysis of BL,with the addition of LTF-800,the yield of liquid product reaches the maximum; the contents of phenolics,guaiacols,syringols,phenylates and furans increase obviously,while those of benzenes,esters and carboxylic acid decrease.The total content of aryl oxygencompounds(including phenolics,guaiacols,syringols and phenylates)in liquid product is more than 74 wt%with the addition of LTF-800,larger than that obtained by single BL pyrolysis(62 wt%).LTF could avoid oxygen-containing functional groups from being excessively destroyed.It has nice regeneration performance by controlled combustion of char even after 5 cycles.
引文
1.Zu Q,Mi CR,Liu DL,He L,Kuang ZM,Fang QX,et al.Spatio-temporal distribution of sugar can epotential yields and yield gaps in southern China.Eur J Agron.2018;92:72.
    2.Paixao SM,Ladeira SA,Silva TP.Sugarcane bagasse delignification with potassium hydroxide for enhanced enzymatic hydrolysis.RSC Adv.2016;6(2):1042.
    3.Brenelli LB,Mandelli F,Mercadante AZ.Acidification treatment of lignin from sugarcane bagasse results in fractions of reduced polydispersity and high free-radical scavenging capacity.Ind Crops Prod.2016;83(2):94.
    4.Zakzeski J,Bruijnincx PCA,Jongerius AL.The catalytic valorization of lignin for the production of renewable chemicals.Chem Rev.2010;110(6):3552.
    5.Prakash A,Singh R,Balagurumurthy B.Recent advances in thermo-chemical conversion of biomass.2015.
    6.Kang SM,Li XL,Fan J.Hydrothermal conversion of lignin:a review.Renew Sustain Energy Rev.201 3;27(6):546.
    7.Shen XJ,Wang B,Huang PL Understanding the structural changes and depolymerization of Eucalyptus lignin under mild conditions in aqueous AICl_3.RSC Adv.2016;6(51):45315.
    8.Bu Q,Lei HW,Wang L.Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.Bioresour Technol.2014;162:142.
    9.Peng CN,Zhang GY,Yue JR.Pyrolysis of lignin for phenols with alkaline additive.Fuel Process Technol.2014;124(1):212.
    10.Wang WL,Ren XY,Li LF.Catalytic effect of metal chlorides on analytical pyrolysis of alkali lignin.Fuel Process Technol.2015;134:345.
    11.Maldhure AV,Ekhe JD.Pyrolysis of purified kraft lignin in the presence of AICl_3and ZnCl_2.J Environm Chem Eng(in Chin.).2013;1(4):844.
    12.Chen L,Ye XN,Luo FX.Pyrolysis mechanism ofβ-O-4 type lignin model dimer.J Anal Appl Pyrolysis.2015;1 15:103.
    13.Wang M,Liu C.Theoretic studies on decomposition mechanism of o-methoxy phenethyl phenyl ether:primary and secondary reactions.J Anal Appl Pyrolysis.2016;117:325.
    14.Kim KH,Bai XL,Brown RC.Pyrolysis mechanisms of methoxy substitutedα-O-4lignin demeric model compounds and detection of free radicals using electron paramagnetic resonance analysis.J Anal Appl Pyrolysis.2014;110:254.
    15.Jin SH,Xiao ZH,Chen X.Cleavage of lignin-derived 4-0-5 aryl ethers over nickel nanoparticles supported on niobic acid-activated carbon composites.Ind Eng Chem Res.2015;54(8):2302.
    16.Brech YL,Jia LY,Cisse S.Mechanisms of biomass pyrolysis studied by combining a fixed bed reactor with advanced gas analysis.J Anal Appl Pyrolysis.2016;117:334.
    17.Liu Q,Wang SR,Zheng Y.Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis.J Anal Appl Pyro lysis.201 5;82:1 70.
    18.Ji DH,Wang SL,Ge XZ,Xiao XJ,Wang LW,Zeng ZW,et al.Effect of calcination temperature on B-site vacancy content of La_(0.75)Sr_(0.25)Mn_(0.92)D_(0.08)O_(3-δ)perovskite.J Rare Earths.2018;36:287.
    19.Zhan HJ,Wu ZQ,Zhao N,Liu WY,Wei W.Structural properties and catalytic performance of the La-Cu-Zn mixed oxides for CO_2 hydrogenation to methanol.J Rare Earths.2018;36:273.
    20.Prabu M,Ramakrishnan P,Ganesan P,Manthiram A,Shanmugam S.La Ti_(0.65)Fe_(0.35)O_(3-δ)nanoparticle-decorated nitrogen-doped carbon nanorods as an advanced hierarchical air electrode for rechargeable metal-air batteries.Nanomater Energy.2015;15:92.
    21.Nguyen TH,Lamacz A,Beaunier P.Partial oxidation of methane over bifunctional catalyst I.In situ formation of Ni~0/La_2O_3 during temperature programmed POM reaction over LaNiO_3 perovskite.Appl Catal B Environ.2014;152-153(1):360.
    22.Levasseur B,Kaliaguine S.Effect of iron and cerium in La_(1-y)CeyCo_(1-x)Fe_xO_3perovskites as catalysts for VOC oxidation.Appl Catal B Environ.2009;88(3-4):305.
    23.Constantinou C,Li W,Qi GS.Storage and reduction over a perovskite-based lean NO, trap catalyst.Appl Catal B Environ.2013;134-135(5):66.
    24.Abdelsayed V,Shekhawat D,JAP Jr.Synthesis,characterization,and catalytic activity of Rh-based lanthanum zirconate pyrochlores for higher alcohol synthesis.Catal Today.2013;207(21):65.
    25.Resende KA,Avila-Neto CN,Rabelo-Neto RC.Hydrogen production by reforming of acetic add using La-Ni type perovskites partially substituted with Sm and Pr.Catal Today.2015;242:71.
    26.Guo L,Zhao HB,Yang WJ.Biomass direct chemical looping with oxygen uncoupling using Cu-Based oxygen carrier.J Combust Sci Technol(in Chin.).2014;20(6):523.
    27.Deng HB,Lin L,Sun Y.Activity and stability of perovskite-type oxide LaCoO_3-catalyst in lignin catalytic wet oxidation to aromatic aldehydes process.Energy Fuel.2009;23(1):19.
    28.Deng HB,Lin L,Liu SJ.Catalysis of Cu-doped Co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes.Energy Fuel.2010;24(9):4797.
    29.Deng HB,Lin L,Sun Y.Activity and stability of LaFeO_3 catalyst in lignin catalytic wet oxidation to aromatic aldehydes.Chin J Catal.2008;29(1):753.
    30.Guo R,Shi PF,Cheng XQ.Synthesis and characterization of LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2by high temperature solid-state method.Chin J Inorg Chem.2007;23(8):1387.
    31.Chung CC,Chai YL,Chang Y.Dielectric properties of valence compensated Ca_(1-x)Bi_xTi_(1-x)Cr_xO_3 perovskite prepared using the sol-gel process.J Phys Chem Solids.2008;69(8):1877.
    32.Harunsani MH,Woodward DI,Peel MD.Investigation of the hydrothermal crystallisation of the perovskite solid solution NaCe_(1-x)La_xTi_2O_6 and its defect chemistry.J Solid State Chem.2013;207(6):1 1 7.
    33.Zhuang SX,Lv JX,Lu M,Liu YM,Chen XB.Preparation and applications of perovskite-type oxides as electrode materials for solid oxide fuel cell and metal-air battery.Process Chem(in Chin.).2015;27(4):436.
    34.Zhu CY,Nobuta A,Nakatsugawa I.Solution combustion synthesis of LaMO_3(M=Fe,Co,Mn)perovskite nanoparticles and the measurement of their electrocatalytic properties for air cathode.Int J Hydrog Energy.2013;38(30):13238.
    35.Wallin M,Cruise N,Klement U.Preparation of Mn,Fe and Co based perovskite catalysts using microemulsions.Colloids Surf,A.2004;238(1):27.
    36.Song FP,Zhu QA,Wang SF.Preparation of BaTiO_3 spherical nanoparticles by reverse microemulsion.Chin J Inorg Chem.2006;22(2):355.
    37.Chen YG,Galinsky N,Wang ZR,Li EX.Investigation of perovskite supported composite oxides for chemical looping conversion of syngas.Fuel.2014;134(9):521.
    38.Kibet J,Khachatryan L,Dellinger B.Molecular products and radicals from pyrolysis of lignin.Environ Sci Technol.2012;46(23):12994.
    39.Rousseau S,Loridant S,Delichere P.La_((1-x))Sr_xCo_(1-y)Fe_yO_3 perovskites prepared by sol-gel method:characterization and relationships with catalytic properties for total oxidation of toluene.Appl Catal B Environ.2009;88(4):438.
    40.Mei DF,Zhao HB,Ma ZJ.Preparation method study on Fe_2O_3/Al_2O_3 oxygen carrier.J Fuel Chem Technol(in Chin.).2012;40(7):795.
    41.Wang SR,Wang KG,Liu Q.Comparison of the pyrolysis behavior of lignins from different tree species.Biotechnol Adv.2009;27(5):562.
    42.Rio JCD,Lino AG,Colodette JL.Differences in the chemical structure of the lignins from sugarcane bagasse and straw.Biomass Bioenergy.2015;81:322.
    43.Huang JB,Liu C,Wu D.Density functional theory studies on pyrolysis mechanism ofβ-O-4 type lignin dimer model compound.J Anal Appl Pyrolysis.2014;109:98.
    44.Wei YC,Liu J,Zhao Z.Three-dimensionally ordered macroporous Ce_(0.8)Zr_(0.2)O_2-supported gold nanoparticles:synthesis with controllable size and supercatalytic performance for soot oxidation.Energy Environ Sci.201 1;4(8):2959.
    45.Wang WL,Geng J,Li LF.Catalytic properties of fast pyrolysis char loaded with CuZn on alkali lignin pyrolysis for monophenols.Acta Chim Sin.2016;37(4):736.
    46.Chen YG,Wang XH,Han HJ,Wang HY,An HY,Song H,et al.Production of phenolic compounds from bagasse lignin via catalytic pyrolysis of CaZr_(1-x-)FexO_3.Acta Chim Sin.201 7;38(2):252.
    47.Duan XG,Su C,Miao J,Zhong YJ,Shao ZP,Wang SB,et al.Insights into perovskite-catalyzed peroxymonosulfate activation:maneuverable cobalt sites for promoted evolution of sulfate radicals.Appl Catal B Environ.2018;220:626.
    48.Shi CM,Qin HW,Zhao M.Investigation on electrical transport,CO sensing characteristics and mechanism for nanocrystalline La_(1-x)CaxFeO_3 sensors.Sensor Actuator B Chem.2014;1 90:25.
    49.Su C,Duan XG,Miao J,Zhong YJ,Zhou W,Wang SB,et al.Mixed conducting perovskite materials as superior catalysts for fast aqueous-phase advanced oxidation:a mechanistic study.ACS Catal.2017;7:388.
    50.Wang H,Liu J,Zhao Z.Comparative study of nanometric Co-,Mn-and Fe-based perovskite-type complex oxide catalysts for the simultaneous elimination of soot and NOx from diesel engine exhaust.Catal Today.2012;184(1):288.
    51.Lin XT,Li SJ,He H.Evolution of oxygen vacancies in MnO_x-CeO_2 mixed oxides for soot oxidation.Appl Catal B Environ.2018;223:91.
    52.Hernandez WY,Tsampas MN,Zhao C,Boreave A,Bosselet F,Vernoux P.La/Srbased perovskites as soot oxidation catalysts for Gasoline Particulate Filters.Catal Today.2015;258:525.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700