植物核DNA含量在全球尺度上的纬度变异式样及其气候适应意义——以菊科植物为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Latitudinal variation patterns of plant nuclear DNA amount on a global scale and their environmental adaptation significance:a case study with Asteraceae
  • 作者:解梦 ; 于晶 ; 郭水良
  • 英文作者:XIE Meng;YU Jing;GUO Shuiliang;College of Life and Environmental Sciences,Shanghai Normal University;
  • 关键词:菊科 ; DNA含量 ; DNA ; C-值 ; 基因组大小 ; 非线性关系 ; 纬度 ; 生物气候因子
  • 英文关键词:Asteraceae;;nuclear DNA amount;;DNA C-value;;genome size;;nonlinear relationship;;latitude;;bioclimatic variable
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:上海师范大学生命与环境科学学院;
  • 出版日期:2018-02-01 16:25
  • 出版单位:生态学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(31070479)
  • 语种:中文;
  • 页:STXB201810010
  • 页数:9
  • CN:10
  • ISSN:11-2031/Q
  • 分类号:102-110
摘要
DNA含量是重要的生物学概念,涉及DNA C-值和基因组大小。前人有关植物核DNA含量在纬度梯度上的变异规律存在着矛盾的报道,而且多数将核DNA含量与纬度、海拔、气候等因素之间的关系描述成线性关系。核DNA含量是否具有环境适应上的意义,也还存在争议。先前有关核DNA含量与环境因素间关系的矛盾性报道可能与取样过小、地理范围过窄、研究对象遗传背景差异过大有关。如果对一个遗传背景相近的类群在全球范围内进行取样,核DNA含量会呈现有规律的纬度梯度变化,可能与大的气候因素之间存在非线性关系。菊科(Asteraceae)是被子植物的最大科,是一个广泛认可的自然分类群。为揭示全球空间尺度上植物核DNA含量在纬度梯度上的变异规律,以及这种变异是否具有环境适应意义,以菊科为对象开展了核DNA含量与纬度、生物气候因素关系的统计分析。从"植物DNA C-值数据库"检索到822种菊科植物的核DNA含量数据;在全球范围内,沿经度方向上设立10条样带,每条样带横跨15个经度,每条样带又均分成22个样块,每个样块纵跨7.5个纬度;其次,从"世界气候数据网站"下载1950—2000年时间段14个生物气候因子数据,应用Arc GIS 9.3获得每个样块14个生物气候因子的平均值;根据"全球生物多样性信息网站"记录,计算每个样块菊科植物平均的核DNA含量数据。为避免气候变量之间的多重共线性对数据分析的影响,应用主成分分析对数据进行了降维,发现最冷季度平均温度、最干季度雨量分别是第一、二主成分上荷载最大的因子,去除与它们相关性在-0.7至+0.7之间的其他气候因子后获得了最冷季度平均温度、最干季度雨量和最湿月份雨量三个变量用于进一步数据分析。结果发现,菊科植物在全球10个样带上的核DNA含量与纬度关系密切,与最冷季度平均温度、最干季度雨量和最湿月份雨量呈现极显著的单峰型的非线性关系,可以用二项式进行拟合。因此,全球空间尺度上植物核DNA含量沿着纬度梯度有规律性的非线性变化,这种变化具有很强的气候适应意义。
        Nuclear DNA amount is an important biological concept that includes DNA C-value and genome size. There are conflicting reports about latitudinal variation patterns of plant nuclear DNA amount. Relationships of plant nuclear DNA amount with latitude,altitude,and climatic variables have been reported as linear. Disputes also exist as to whether nuclear DNA amount of plants is of environmental adaptation significance. We speculated that the conflicting reports were due to insufficient sampling of the taxa,limitations in the geographical range,and different genetic backgrounds of the samples.Asteraceae is not only the largest family within angiosperms,but also a widely accepted natural taxa. To clarify the latitudinal variation patterns of plant nuclear DNA amount on a global scale,and to explore the possible climatic adaptation significance of these patterns,we conducted a study with Asteraceae to analyze the relationships of nuclear DNA amount with latitude and bioclimatic variables. First,we obtained the data of nuclear DNA amounts of 822 species of Asteraceae from the Plant DNA C-value database. We selected ten global longitudinal transects,each with a span of 15 longitudinal degrees,and evenly divided each transect( from 82.5°N to 82.5°S) into 22 blocks. We obtained geographical records of the822 species from the Global Biodiversity Information Faculty,together with fourteen bioclimatic factors within these blocks from the Worldclim Global Climate Database. We calculated the average DNA 1 C-values and genome sizes of each species in each block. To avoid multicollinearity among the fourteen climatic variables,we performed principal component analysis( PCA) to reduce the dimensionality of the variables. We found that the mean temperature of the coldest quarter and the precipitation of the driest quarter had the highest loads in the first two principal components. The climatic variables with low correlation coefficients(-0.7 to 0.7) with the above two variables were included in the analyses. We found that the nuclear DNA amounts of Asteraceae had a regular latitudinal variation that could be expressed by polynomial functions. The relationships of nuclear DNA amount with the mean temperature of the coldest quarter,the precipitation of the driest quarter,and the wettest month were typically nonlinear with a unimodal pattern,and could be expressed by binominal equations. Therefore,on the global scale,plant nuclear DNA amount changes regularly on latitudinal gradients,which has distinct climatic adaptation significance.
引文
[1]Leitch I J,Bennett M D.Genome downsizing in polyploid plants.Biological Journal of the Linnean Society,2004,82(4):651-663.
    [2]Swift H.The constancy of desoxyribose nucleic acid in plant nuclei.Proceedings of the National Academy of Sciences of the United States of America,1950,36(11):643-654.
    [3]Bennett M D.Plant genome values:how much do we know?Proceedings of the National Academy of Sciences of the United States of America,1998,95(5):2011-2016.
    [4]Chen G Q,Guo S L,Yin L P.Applying DNA C-values to evaluate invasiveness of angiosperms:validity and limitation.Biological Invasions,2010,12(5):1335-1348.
    [5]郭水良,陈国奇,毛俐慧.DNA C-值与被子植物入侵性关系的数据统计分析——以中国境内有分布的539种被子植物为例.生态学报,2008,28(8):3698-3705.
    [6]郭水良,于晶,李丹丹,周平,方其,印丽萍.长三角及邻近地区138种草本植物DNA C-值测定及其生物学意义.生态学报,2015,35(19):6516-6529.
    [7]李国旗,安树青,陈兴龙,程晓莉,张纪林.生物的C值矛盾与其生态适应性的关系初探.大自然探索,1999,18(2):61-66.
    [8]苏筱娟.非编码DNA到底有没有用?国外科技动态,2000,(11):32-33.
    [9]Levin D A,Funderburg S W.Genome size in angiosperms:temperate versus tropical species.The American Naturalist,1979,114(6):784-795.
    [10]Grime J P,Mowforth M A.Variation in genome size-an ecological interpretation.Nature,1982,299(5879):151-153.
    [11]Razafinarivo N J,Rakotomalala J J,Brown S C,Bourge M,Hamon S,de Kochko A,Poncet V,Dubreuil-Tranchant C,Couturon E,Guyot R,Hamon P.Geographical gradients in the genome size variation of wild coffee trees(Coffea)native to Africa and Indian Ocean islands.Tree Genetics&Genomes,2012,8(6):1345-1358.
    [12]Bottini M C J,Greizerstein E J,Aulicino M B,Poggio L.Relationships among Genome Size,Environmental Conditions and Geographical Distribution in Natural Populations of NW Patagonian Species of Berberis L.(Berberidaceae).Annals of Botany,2000,86(3):565-573.
    [13]Teoh S B,Rees H.Nuclear DNA amounts in populations of Picea and Pinus species.Heredity,1976,36(1):123-137.
    [14]Creber H M C,Davies M S,Francis D,Walker H D.Variation in DNA C value in natural populations of Dactylis glomerata L.New Phytologist,1994,128(3):555-561.
    [15]Knight C A,Ackerly D D.Variation in nuclear DNA content across environmental gradients:a quantile regression analysis.Ecology Letters,2002,5(1):66-76.
    [16]Li D D,Lu Y L,Guo S L,Yin L P,Zhou P,Lou Y X.Nuclear DNA contents of Echinchloa crus-galli and its Gaussian relationships with environments.Acta Oecologica,2017,79:36-47.
    [17]Rayburn A L,Auger J A.Genome size variation in Zea mays ssp.mays adapted to different altitudes.Theoretical and Applied Genetics,1990,79(4):470-474.
    [18]Bennett M D,Leitch I J.Angiosperm DNA C-values database[DB/OL].http://www.kew.org/cvalues/.2017-10-30
    [19]Bennett M D.DNA amount,latitude,and crop plant distribution.Environmental and Experimental Botany,1976,16(2/3):93-108.
    [20]Stebbins G L.Chromosomal variation and evolution.Science,1966,152(3728):1463-1469.
    [21]Vidic T,Greilhuber J,Vilhar B,Dermastia M.Selective significance of genome size in a plant community with heavy metal pollution.Ecological Applications,2009,19(6):1515-1521.
    [22]Cui H J,Liu X W,Tan W F,Feng X H,Liu F,Daniel Ruan H.Influence of Mn(III)availability on the phase transformation from layered buserite to tunnel-structured todorokite.Clays and Clay Minerals,2008,56(4):397-403.
    [23]郭水良,陈国奇.根尖分生组织细胞核大小:一个可能用于植物入侵性评估的新指标.植物科学学报,2015,33(1):53-60.
    [24]倪丽萍,郭水良.论DNA C-值与植物入侵性的关系.生态学报,2005,25(9):2372-2381.
    [25]Beaulieu J M,Leitch I J,Knight C A.Genome size evolution in relation to leaf strategy and metabolic rates revisited.Annals of Botany,2007,99(3):495-505.
    [26]Knight C A,Beaulieu J M.Genome size scaling through phenotype space.Annals of Botany,2008,101(6):759-766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700