广东省和江苏省大气甲醛时空变化对比分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative analysis of long-term(2005—2016) spatiotemporal variations in high-level tropospheric formaldehyde(HCHO) in Guangdong and Jiangsu Provinces in China
  • 作者:朱松岩 ; 李小英 ; 程天海 ; 余超 ; 王新辉 ; 苗晶 ; 侯灿
  • 英文作者:ZHU Songyan;LI Xiaoying;CHENG Tianhai;YU Chao;WANG Xinhui;MIAO Jing;HOU Can;State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University;University of Chinese Academy of Sciences;State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University;Beijing Municipal Environmental Monitoring Center;Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science &Technology;
  • 关键词:大气甲醛 ; OMI ; VOC ; 光化学反应 ; 人为源排放 ; 趋势分析
  • 英文关键词:HCHO;;OMI;;VOC;;photochemical reaction;;anthropogenic emissions;;trend analysis
  • 中文刊名:YGXB
  • 英文刊名:Journal of Remote Sensing
  • 机构:中国科学院遥感与数字地球研究所遥感科学国家重点实验室;中国科学院大学;清华大学环境学院环境模拟与污染控制国家重点联合实验室;北京市环境保护监测中心;南京信息工程大学气象灾害教育部重点实验室;
  • 出版日期:2019-01-25
  • 出版单位:遥感学报
  • 年:2019
  • 期:v.23
  • 基金:国家自然科学基金(编号:41571345,41501476);; 高分共性技术(编号:32-Y20A18-9001-15-17-1);; 遥感科学国家重点实验室自由探测项目(编号:Y1Y00202KZ)~~
  • 语种:中文;
  • 页:YGXB201901013
  • 页数:18
  • CN:01
  • ISSN:11-3841/TP
  • 分类号:141-158
摘要
利用Aura/OMI月均甲醛对流层垂直柱浓度数据对2005年—2016年中国广东省和江苏省的大气甲醛的时空变化规律、不同排放源的前体物的潜在贡献进行了分析。甲醛在广东省主要集中在珠三角地区,在江苏省分布则相对较为均匀。2005年—2010年,随着经济发展,在两省都发现了大面积的甲醛增加趋势;相应的,在2011年—2016年,由于减排等治理措施的实施,在两省都有大面积的甲醛减少现象。广东省的甲醛主要呈现出春季、秋季高于冬季再高于夏季的特征;而江苏地区夏季甲醛浓度远高于其他季节,并与光照强度的季节性特征较为一致。此外,由于广东省甲醛分布的均一性较差,因此区域性因素(如地形等)对广东省甲醛分布可能有着较大的影响。各个排放源中,工业源、交通源对珠三角潜在贡献可能较大;自然源对梅州等林地覆盖地区可能有相对较高的影响;在江苏省,各个排放源对甲醛的贡献相对均衡,但夏季较为频繁的生物质燃烧可能对夏季高值甲醛有着相对较高的贡献。
        High-level tropospheric formaldehyde(HCHO) columns were observed in Guangdong and Jiangsu Provinces in China by using the long-term records(2005–2016) of Aura OMI measurements. Given the socioeconomic status of Guangdong and Jiangsu Provinces, research concerning the widespread air pollution issues throughout these regions was imperative. Hence, the spatiotemporal variations in HCHO and the potential contributors were analyzed accordingly. We evaluated the spatiotemporal characteristics of HCHO columns in province-and prefecture-level cites to investigate the region of interest in various spatial resolutions. Hence, administrative shapefiles were used to clip the HCHO distributions to represent various sample regions. The spatial resolution of the OMI monthly gridded HCHO columns was 0.25° × 0.25°, but some ancillary data have finer resolutions than that of the level-3 gridded HCHO columns. Accordingly, the inverse distance-weighted interpolation algorithm and KD-Tree method were adopted for re-sampling fine spatial resolutions into 0.25° × 0.25°. The linear least square regression adopted in this study was the approach used to infer the potential trends exhibited in the HCHO images. The trends were fitted pixel by pixel, and the regional trends were calculated via zonal averaging of the administrative regions selected in the previously mentioned shapefiles. The Spearman correlation coefficients were employed to evaluate the similarity of the HCHO distribution and multitude sources(e.g., isoprene and anthropogenic VOCs). In Guangdong Province, HCHO columns concentrated in the Pearl River Delta(PRD), but an increasingly widespread distribution was observed in Jiangsu Province. An upward trend was found in both provinces from2005 to 2010 that may be closely related to the rapid economy development in that period. Meanwhile, from 2011 to 2016, an overall downward trend was observed in these two regions, given the enacted multitude controls. With regard to seasonality, the highest HCHO columns were observed in spring and autumn, whereas the HCHO during summertime had the lowest concentration in Guangdong. The HCHO seasonal patterns corresponded to the seasonal patterns of sunlight intensity. Among all source sectors, industrial and transportation may contribute the most in the PRD, but all sectors may also contribute in the same order of magnitude in Jiangsu. In addition, biogenic sources may have a comparatively large contribution in the Northeastern Guangdong, and the biomass burning in summertime possibly played a substantial role in the summertime HCHO concentration in Jiangsu Province. Although isoprene plays significant role in HCHO concentration in global scale, the anthropogenic impact cannot be neglected as well. According to previous studies, anthropogenic sources have more than 40% influence. In addition, in comparison with isoprene, the Spearman correlation coefficients were high for anthropogenic VOCs with HCHO columns. Given the relatively large amount of emissions, industrial sources may be influential for more than 40%. Biomass burning sources cannot be ignored in woodlands, such as in Northeastern Guangdong. Transportation sources exhibited the most similar Spearman correlation coefficients in Guangdong, especially in PRD. Therefore, even a downward trend of transportation emissions was observed in PRD. They may account for a large amount of HCHO concentration. After a comparison, power-based emissions only took a small fraction of approximately 1% for Guangdong and Jiangsu.
引文
Barkley M P,Smedt I D,Van Roozendael M,Kurosu T P,Chance K,Arneth A,Hagberg D,Guenther A,Paulot F,Marais E and Mao JQ.2013.Top-down isoprene emissions over tropical South America inferred from SCIAMACHY and OMI formaldehyde columns.Journal of Geophysical Research:Atmospheres,118(12):6849-6868[DOI:10.1002/jgrd.50552]
    Bauwens M,Stavrakou T,Müller J F,De Smedt I,Van Roozendael M,Van Der Werf G R,Wiedinmyer C,Kaiser J W,Sindelarova Kand Guenther A.2016.Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations.Atmospheric Chemistry and Physics,16(15):10133-10158[DOI:10.5194/acp-16-10133-2016]
    Bo Y,Cai H and Xie S D.2008.Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China.Atmospheric Chemistry and Physics,8(23):7297-7316[DOI:10.5194/acp-8-7297-2008]
    Choi Y,Kim H,Tong D and Lee P.2012.Summertime weekly cycles of observed and modeled NOx and O3 concentrations as a function of satellite-derived ozone production sensitivity and land use types over the Continental United States.Atmospheric Chemistry and Physics,12(14):6291-6307[DOI:10.5194/acp-12-6291-2012]
    De Smedt I,Müller J F,Stavrakou T,Van Der A R,Eskes H and Van Roozendael M.2008.Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHYsensors.Atmospheric Chemistry and Physics,8(16):4947-4963[DOI:10.5194/acp-8-4947-2008]
    De Smedt I,Roozendael M V,Stavrakou T,Müller J F,Lerot C,Theys N,Valks P,Hao N and Van Der A R.2012.Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues.Atmospheric Measurement Techniques,5(11):2933-2949[DOI:10.5194/amt-5-2933-2012]
    De Smedt I,Stavrakou T,Hendrick F,Danckaert T,Vlemmix T,Pinardi G,Theys N,Lerot C,Gielen C,Vigouroux C,Hermans C,Fayt C,Veefkind P,Müller J F and Van Roozendael M.2015.Diurnal,seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations.Atmospheric Chemistry and Physics Discussions,15(8):12241-12300[DOI:10.5194/acp-15-12519-2015]
    De Smedt I,Stavrakou T,Müller J F,Van Der A R J and Van Roozendael M.2010.Trend detection in satellite observations of formaldehyde tropospheric columns.Geophysical Research Letters,37(18):L18808[DOI:10.1029/2010GL044245]
    Duncan B N,Yoshida Y,Damon M R,Douglass A R and Witte J C.2009.Temperature dependence of factors controlling isoprene emissions.Geophysical Research Letters,36(5):L05813[DOI:10.1029/2008GL037090]
    Duncan B N,Yoshida Y,Olson J R,Sillman S,Martin R V,Lamsal L,Hu Y T,Pickering K E,Retscher C,Allen D J and Crawford J H.2010.Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation.Atmospheric Environment,44(18):2213-2223[DOI:10.1016/j.atmosenv.2010.03.010]
    Friedfeld S,Fraser M,Ensor K,Tribble S,Rehle D,Leleux D and Tittel F.2002.Statistical analysis of primary and secondary atmospheric formaldehyde.Atmospheric Environment,36(30):4767-4775[DOI:10.1016/S1352-2310(02)00558-7]
    Fu T M,Jacob D J,Palmer P I,Chance K,Wang Y X,Barletta B.Blake D R,Stanton J C and Pilling M J 2007.Space‐based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone.Journal of Geophysical Research:Atmospheres,112(D6):D06312[DOI:10.1029/2006JD007853]
    Gao W K,Tang G Q,Xin J Y,Wang L L and Wang Y S.2016.Spatialtemporal variations of ozone during severe photochemical pollution over the Beijing-Tianjin-Hebei region.Research of Environmental Sciences,29(5):654-663(高文康,唐贵谦,辛金元,王莉莉,王跃思.2016.京津冀地区严重光化学污染时段O3的时空分布特征.环境科学研究,29(5):654-663)[DOI:10.13198/j.issn.1001-6929.2016.05.06]
    Giglio L,Loboda T,Roy D P,Quayle B and Justiceb C O.2009.An active-fire based burned area mapping algorithm for the MODISsensor.Remote Sensing of Environment,113(2):408-420[DOI:10.1016/j.rse.2008.10.006]
    González Abad G,Liu X,Chance K,H.Wang1,Kurosu T P and Suleiman R 2015.Updated smithsonian astrophysical observatory ozone monitoring instrument(SAO OMI)formaldehyde retrieval.Atmospheric Measurement Techniques,8(1):19-32[DOI:10.5194/amt-8-19-2015]
    Guenther A,Karl T,Harley P,Wiedinmyer C,Palmer P I and Geron C.2006.Estimates of global terrestrial isoprene emissions using MEGAN(model of emissions of gases and aerosols from nature).Atmospheric Chemistry and Physics,6(11):3181-3210[DOI:10.5194/acp-6-3181-2006]
    Guenther A B,Jiang X,Heald C L,Sakulyanontvittaya T,Duhl T,Emmons L K and Wang X.2012.The model of emissions of gases and aerosols from nature version 2.1(MEGAN2.1):an extended and updated framework for modeling biogenic emissions.Geoscientific Model Development,5(6):1471-1492[DOI:10.5194/gmd-5-1471-2012]
    Hao J M,He D Q,Wu Y,Fu L X and He K B.2000.A study of the emission and concentration distribution of vehicular pollutants in the urban area of Beijing.Atmospheric Environment,34(3):453-465[DOI:10.1016/S1352-2310(99)00324-6]
    He K.2012.Multi-resolution Emission Inventory for China(MEIC):model framework and 1990-2010 anthropogenic emissions[C]//Proceedings of 2012 AGU Fall Meeting.Beijing,China:School of Environment,Tsinghua University
    Huo H,Zhang Q,Guan D B,Su X,Zhao H Y and He K B.2014.Examining air pollution in China using production-and consumption-based emissions accounting approaches.Environmental Science and Technology,48(24):14139-14147[DOI:10.1021/es503959t]
    Jin X M and Holloway T.2015.Spatial and temporal variability of ozone sensitivity over China observed from the Ozone Monitoring Instrument.Journal of Geophysical Research:Atmospheres,120(14):7229-7246[DOI:10.1002/2015JD023250]
    Kaczorowski J and Perelli A.2004.Inversion of CO and NOx emissions using the adjoint of the IMAGES model.Atmospheric Chemistry and Physics Discussions,4(6):7985-8068
    Li M,Zhang Q,Kurokawa J I,Woo J H,He K B,Lu Z F,Ohara T,Song Y,Streets D G,Carmichael G R,Cheng Y F,Hong C P,Huo H,Jiang X J,Kang S C,Liu F,Su H and Zheng B.2017.MIX:a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP.Atmospheric Chemistry and Physics,17(2):935-963[DOI:10.5194/acp-17-935-2017]
    Li M,Zhang Q,Streets D G,He K B,Cheng Y F,Emmons L K,Huo H,Kang S C,Lu Z,Shao M,Su H,Yu X and Zhang Y.2014.Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms.Atmospheric Chemistry and Physics,14(11):5617-5638[DOI:10.5194/acp-14-5617-2014]
    Liu F,Zhang Q,Tong D,Zheng B,Li M,Huo H and He K B.2015.High-resolution inventory of technologies,activities,and emissions of coal-fired power plants in China from 1990 to 2010.Atmospheric Chemistry and Physics,15(23):13299-13317[DOI:10.5194/acp-15-13299-2015]
    Marais E A,Jacob D J,Kurosu T P,Chance K V,Murphy J G,Reeves C,Mills G,Casadio S,Millet D B,Barkley M P,Paulot F and Mao J Q.2012.Isoprene emissions in Africa inferred from OMIobservations of formaldehyde columns.Atmospheric Chemistry and Physics Discussions,12(3):7475-7520[DOI:10.5194/acpd-12-6219-2012]
    Müller J F,Stavrakou T,Wallens S,De Smedt I,Van Roozendael M,Potosnak M J,Rinne J,Munger B,Goldstein A and Guenther A B.2007.Global isoprene emissions estimated using MEGAN,ECM-WF analyses and a detailed canopy environment model.Atmospheric Chemistry and Physics,8(5):1329-1341[DOI:10.5194/acp-8-1329-2008]
    Pang X B and Mu Y J.2006.Seasonal and diurnal variations of carbonyl compounds in Beijing ambient air.Atmospheric Environment,40(33):6313-6320[DOI:10.1016/j.atmosenv.2006.05.044]
    Peters E,Wittrock F,K.Gro?mann,Frie?U,Richter A and Burrows JP 2012.Formaldehyde and nitrogen dioxide over the remote western Pacific Ocean:SCIAMACHY and GOME-2 validation using ship-based MAX-DOAS observations.Atmospheric Chemistry and Physics,12(22):11179-11197[DOI:10.5194/acp-12-11179-2012]
    Roy D P,Boschetti L,Justice C O and Ju J.2008.The collection 5MODIS burned area product-Global evaluation by comparison with the MODIS active fire product.Remote Sensing of Environment,112(9):3690-3707[DOI:10.1016/j.rse.2008.05.013]
    Sillman S.1995.The use of NOy,H2O2,and HNO3 as indicators for ozone‐NOx‐hydrocarbon sensitivity in urban locations.Journal of Geophysical Research:Atmospheres,100(D7):14175-14188[DOI:10.1029/94JD02953]
    Souri A H,Choi Y,Jeon W,Woo J H and Zhang Q.2017.Remote sensing evidence of decadal changes in major tropospheric ozone precursors over East Asia.Journal of Geophysical Research:Atmospheres,122(4):2474-2492[DOI:10.1002/2016JD025663]
    Stavrakou T,Müller J F,Bauwens M,De Smedt I,Van Roozendael M,Guenther A,Wild M and Xia,X.2013.Isoprene emissions over Asia 1979-2012:impact of climate and land-use changes.Atmospheric Chemistry and Physics Discussions,13(11):29551-29592[DOI:10.5194/acpd-14-4587-2014]
    Vrekoussis M,Wittrock F,Richter A and Burrows J P.2010.GOME-2observations of oxygenated VOCs:what can we learn from the ratio glyoxal to formaldehyde on a global scale?.Atmospheric Chemistry and Physics Discussions,10(8):19031-19069[DOI:10.5194/acpd-10-19031-2010]
    Wang Y,Zhang Y,Hao J and Luo M.2010.Seasonal and spatial variability of surface ozone over China:contributions from background and domestic pollution.Atmospheric Chemistry and Physics,11(7):3511-3525[DOI:10.5194/acp-11-3511-2011]
    Wang Z H,Bai Y H and Zhang S Y.2003.A biogenic volatile organic compounds emission inventory for Beijing.Atmospheric Environment,37(27):3771-3782[DOI:10.1016/S1352-2310(03)00462-X]
    Wei W,Wang S X,Chatani S,Klimont Z,Cofala J and Hao J M.2008.Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China.Atmospheric Environment,42(20):4976-4988[DOI:10.1016/j.atmosenv.2008.02.044]
    Wei X L,Li Y S,Lam K S,Wang A Y and Wang T J.2007.Impact of biogenic VOC emissions on a tropical cyclone-related ozone episode in the Pearl River Delta region,China.Atmospheric Environment,41(36):7851-7864[DOI:10.1016/j.atmosenv.2007.06.012]
    Zhang H Q,Xu E Q and Zhu H Y.2015.An ecological-living-industrial land classification system and its spatial distribution in China.Resources Science,37(7):1332-1338(张红旗,许尔琪,朱会义.2015.中国“三生用地”分类及其空间格局.资源科学,37(7):1332-1338)
    Zhang Q,Shao M,Li Y,Lu S H,Yuan B and Chen W T.2012.Increase of ambient formaldehyde in Beijing and its implication for VOC reactivity.Chinese Chemical Letters,23(9):1059-1062[DOI:10.1016/j.cclet.2012.06.015]
    Zhang Q,Streets D G,Carmichael G R,He K B,Huo H,Kannari A,Klimont Z,Park I S,Reddy S,Fu J S,Chen D,Duan L,Lei Y,Wang L T and Yao Z L.2009.Asian emissions in 2006 for the NASA INTEX-B mission.Atmospheric Chemistry and Physics,9(14):5131-5153[DOI:10.5194/acp-9-5131-2009]
    Zhang X S,Mu Y J,Song W Z and Zhang Y H.2000.Seasonal variations of isoprene emissions from deciduous trees.Atmospheric Environment,34(18):3027-3032[DOI:10.1016/S1352-2310(99)00311-8]
    Zhang Y J,Pang X B and Mu Y J.2009.Contribution of isoprene emitted from vegetable to atmospheric formaldehyde in the ambient air of Beijing city.Environmental Science,30(4):976-981(张玉洁,庞小兵,牟玉静.2009.北京市植物排放的异戊二烯对大气中甲醛的贡献.环境科学,30(4):976-981)[DOI:10.3321/j.issn:0250-3301.2009.04.006]
    Zheng B,Huo H,Zhang Q,Yao Z L,Wang X T,Yang X F,Liu H and He K B.2014.High-resolution mapping of vehicle emissions in China in 2008.Atmospheric Chemistry and Physics,14(18):9787-9805[DOI:10.5194/acp-14-9787-2014]
    Zhu L,Jacob D J,Kim P S,Fisher J A,Yu K,Travis K R,Mickley L J,Yantosca R M,Sulprizio M P,De Smedt I,Abad G G,Chance K,Li C,Ferrare R,Fried A,Hair J W,Hanisco T F,Richter D,Scarino A J,Walega J,Weibring P and Wolfe G M.2016.Observing atmospheric formaldehyde(HCHO)from space:validation and intercomparison of six retrievals from four satellites(OMI,GOME2A,GOME2B,OMPS)with SEAC4RS aircraft observations over the Southeast US.Atmospheric Chemistry and Physics,16(21):13477-13490[DOI:10.5194/acp-16-13477-2016]
    Zhu L,Mickley L J,Jacob D J,Marais E A,Sheng J X,Hu L,González Abad G and Chance K.2017.Long‐term(2005-2014)trends in formaldehyde(HCHO)columns across North America as seen by the OMI satellite instrument:evidence of changing emissions of volatile organic compounds.Geophysical Research Letters,44(13):7079-7086[DOI:10.1002/2017GL073859]
    Zhu S Y,Li X Y,Yu C,Wang H,Wang Y and Miao J.2018.Spatiotemporal variations in satellite-based formaldehyde(HCHO)in the Beijing-Tianjin-Hebei region in China from 2005 to 2015.Atmosphere,9(1):5[DOI:10.3390/atmos9010005]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700