过渡金属分子催化的烷烃转化进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transition-metal complex-catalyzed alkane functionalization
  • 作者:汤锌锌 ; 黄正
  • 英文作者:Xinxin Tang;Zheng Huang;State Key Laboratory of Organometallic Chemistry,Center for Excellence in Molecular Synthesis,Shanghai Institute of Organic Chemistry,Chinese Academy of Sciences;
  • 关键词:烷烃脱氢 ; 双金属催化 ; 鳌型铱配合物 ; 烷烃端位官能团化 ; 聚乙烯降解
  • 英文关键词:alkane dehydrogenation;;dual-metal catalysis;;iridium pincer complex;;terminal alkane functionalization;;polyethylene degradation
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国科学院上海有机化学研究所分子合成科学卓越创新中心金属有机化学国家重点实验室;
  • 出版日期:2018-05-20
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 基金:国家自然科学基金优秀青年科学基金(21422209);国家自然科学基金重点项目(21422209)资助
  • 语种:中文;
  • 页:KXTB201814009
  • 页数:13
  • CN:14
  • ISSN:11-1784/N
  • 分类号:102-114
摘要
烷烃价廉量大,发展催化方法将其转化成高附加值的化学品具有重大的意义.然而简单烷烃分子中无导向或活化基团,仅含低极性、高键能C(sp3)-H键和C(sp3)-C(sp3)键,因此对烷烃分子化学键的活化,尤其是众多类似化学键中某一特定化学键的选择性转化具有高度挑战性.本文主要介绍金属配合物分子催化的烷烃脱氢反应,以及基于该类反应发展起来的相关的烷烃转化,包括:(1)鳌型过渡金属配合物催化的烷烃脱氢反应;(2)基于烷烃脱氢的烷烃芳构化和烷/烯烃偶合反应和烷烃端位C-H键官能团化反应;(3)烷烃(交叉)复分解和基于烷烃交叉复分解的聚乙烯温和可控降解反应.
        The selective conversion of simple alkane feedstocks to high-value organic compounds constitutes one of major challenges in organic synthesis.There are three general catalytic methods for alkane functionalizations:reactions via radical intermediates and through carbene/nitrene insertion pathways typically occur preferentially at the secondary and tertiary C-H bonds,whereas transition metal-mediated C-H bond activation holds promise for the functionalization of primary C-H bonds.From a practical point of view,the installation of a functional group at the terminal position of alkanes is of particular attractive for large-scale synthesis of specialty or commodity chemicals.This review focuses on the area of molecular transition-metal-catalyzed alkane transformations through catalytic alkane dehydrogenation.In the first section,the development of iridium pincer and related complexes for alkane dehydrogenation is summarized.Among various catalysts,the PCP type Ir pincer complexes have proven to be most active toward transfer dehydrogenation of alkanes.α-Olefins are the kinetic products at the early stage of the dehydrogenation process,but they can be rapidly isomerized to internal alkenes.Recently,other non-phosphorus-ligated Ir and non-Ir metal dehydrogenation catalysts have also been developed,but they are generally less efficient than the PCP Ir catalysts.The second section first describes two dehydrogenation-based alkane transformations without the incorporation of heteroatom-containing functionality.The dehydroaromatization reaction involves multiple steps of dehydrogenation of linear alkanes to form conjugate trienes,which undergo electrocyclization and another step of dehydrogenation to generate aromatic products.The alkane-alkene coupling reaction employs an Ir pincer catalyst for dehydrogenation and a tantalum catalyst for alkene/alkene coupling,thus providing a method for upgrading light alkanes to higher alkanes that may be suitable to transportation fuel.Following that,the selective installation of functional groups at the terminal positions of alkanes through a dehydrogenation-alkene isomerization-hydrofunctionalization strategy using a dual catalyst system is described.Several combinations between a PSCOP Ir pincer dehydrogenation catalyst and molecular Fe or Rh catalysts for tandem isomerization and hydrofunctionalization of terminal alkenes have been developed for terminal selective alkane silylation,borylation,carbonylation,and aminomethylation.The third section covers alkane metathesis and its application to polyethylene(PE) degradation.The alkane metathesis reaction described here consists of two catalysts,one Ir dehydrogenation catalyst and one olefin metathesis catalyst.The metathesis process can find potential application in upgrading low carbon number n-alkanes to higher-molecular-weight fuel alkanes.A cross-alkane metathesis strategy has been developed for PE degradation.Using excess of low-value light alkanes as the reagent/solvent,PE with molecular weight up to 1.7 million undergoes multiple times of cross-alkane metathesis at 175℃ to produce liquid fuels or high-quality waxes.The catalysts can tolerate the commercial HDPE,LDPE and LLDPE,and enable the efficient degradation of postconsumer PE plastic wastes.Finally,the review discusses the limitations of the known catalytic approaches and future opportunities in this field.Catalyst development will be the central theme of research,and insights into the factors controlling the activity and selectivity gained in mechanistic studies will guide the design of more efficient dehydrogenation catalysts.The cooperative catalysis involving enantioselective catalysts will provide a protocol for synthesis of valuable fine chemicals from simple saturated hydrocarbons.Lastly,we should not overlook the potential of cooperation between photo-or electro-catalysis and transition-metal catalysis,which may allow the exploitation of alkane feedstocks more cleanly and efficiently.
引文
1 Labinger J A,Bercaw J E.Understanding and exploiting C-H bond activation.Nature,2002,417:507-514
    2 Bergman R G.Organometallic chemistry:C-H activation.Nature,2007,446:391-393
    3 Hartwig J F.Evolution of C-H bond functionalization from methane to methodology.J Am Chem Soc,2016,138:2-24
    4 Goldberg K I,Goldman A S.Large-scale selective functionalization of alkanes.Acc Chem Res,2017,50:620-626
    5 Kumar A,Bhatti T M,Goldman A S.Dehydrogenation of alkanes and aliphatic groups by pincer-ligated metal complexes.Chem Rev,2017,117:12357-12384
    6 Weckhuysen B M,Schoonheydt R A.Alkane dehydrogenation over supported chromium oxide catalysts.Catal Today,1999,51:223-232
    7 O’Connor R P,Klein E J,Henning D,et al.Tuning millisecond chemical reactors for the catalytic partial oxidation of cyclohexane.Appl Catal A,2003,238:29-40
    8 Olsbye U,Virnovskaia A,Prytz?,et al.Mechanistic insight in the ethane dehydrogenation reaction over Cr/Al2O3 catalysts.Catal Lett,2005,103:143-148
    9 Weissermel K,Arpel H J.Olefins.In:Industrial Organic Chemistry.Weinheim:Wiley-VCH,2003.59-89
    10 Burk M J,Crabtree R H,Mc Grath D V.Thermal and photochemical catalytic dehydrogenation of alkanes with[Ir H2(CF3CO2)(PR3)2](R=C6H4F-p and cyclohexyl).J Chem Soc Chem Commun,1985,(24):1829-1830
    11 Nomura K,Saito Y.n-Alkene and dihydrogen formation from n-alkanes by photocatalysis using carbonyl(chloro)phosphine-rhodium complexes.J Chem Soc Chem Commun,1988,(3):161-162
    12 Maguire J A,Boese W T,Goldman A S.Photochemical dehydrogenation of alkanes catalyzed by trans-carbonylchlorobis(trimethylphosphine)rhodium:Aspects of selectivity and mechanism.J Am Chem Soc,1989,111:7088-7093
    13 Chowdhury A D,Weding N,Julis J,et al.Towards a practical development of light-driven acceptorless alkane dehydrogenation.Angew Chem Int Ed,2014,53:6477-6481
    14 Choi J,Mac Arthur A H R,Brookhart M,et al.Dehydrogenation and related reactions catalyzed by iridium pincer complexes.Chem Rev,2011,111:1761-1779
    15 Tang X,Jia X,Huang Z.Challenges and opportunities for alkane functionalisation using molecular catalysts.Chem Sci,2018,9:288-299
    16 Zhang Y,Yao W,Fang H,et al.Catalytic alkane dehydrogenations.Sci Bull,2015,60:1316-1331
    17 Burk M J,Crabtree R H,Parnell C P,et al.Selective stoichiometric and catalytic carbon-hydrogen bond cleavage reactions in hydrocarbons by iridium complexes.Organometallics,1984,3:816-817
    18 Baudry D,Ephritikhine M,Felkin H,et al.The selective catalytic conversion of cycloalkanes into cycloalkenes using a soluble rhenium polyhydride system.J Chem Soc Chem Commun,1983,(14):788-789
    19 Felkin H,Fillebeen-Khan T,Gault Y,et al.Activation of C-H bonds in saturated hydrocarbons.The catalytic functionalisation of cyclooctane by means of some soluble iridium and ruthenium polyhydride systems.Tetrahedron Lett,1984,25:1279-1282
    20 Moulton C J,Shaw B L.Transition metal-carbon bonds.Part XLII.Complexes of nickel,palladium,platinum,rhodium and iridium with the tridentate ligand 2,6-bis[(di-t-butylphosphino)methyl]phenyl.J Chem Soc Dalton Trans,1976,(11):1020-1024
    21 Errington R J,Mc Donald W S,Shaw B L.Transition metal-carbon bonds.Part 54.Complexes of palladium,platinum,rhodium,and iridium with t Bu2PCH2CHMe(CH2)3Pt Bu2.Crystal structures of[Pd Cl(t Bu2PCH2CHMe CHCH2CH2Pt Bu2)]and[Ir H(Cl)(t Bu2PCH2-CHMe CHCH2CH2Pt Bu2)].J Chem Soc Dalton Trans,1982,(9):1829-1835
    22 Gupta M,Hagen C,Flesher R,et al.A highly active alkane dehydrogenation catalyst:Stabilization of dihydrido rhodium and iridium complexes by a P-C-P pincer ligand.Chem Commun,1996,(17):2083-2084
    23 Xu W W,Rosini P,Krogh Jespersen G,et al.Thermochemical alkane dehydrogenation catalyzed in solution without the use of a hydrogen acceptor.Chem Commun,1997,(23):2273-2274
    24 Liu F,Goldman A S.Efficient thermochemical alkane dehydrogenation and isomerization catalyzed by an iridium pincer complex.Chem Commun,1999,(7):655-656
    25 Krogh-Jespersen K,Czerw M,Zhu K,et al.Combined computational and experimental study of substituent effects on the thermodynamics of H2,CO,arene,and alkane addition to iridium.J Am Chem Soc,2002,124:10797-10809
    26 Wan X,Wang X,Luo Y,et al.Theoretical investigation on functionalization of alkanes by a rhodium complex catalyst.Organometallics,2002,21:3703-3708
    27 Zhu K,Achord P D,Zhang X,et al.Highly effective pincer-ligated iridium catalysts for alkane dehydrogenation.DFT calculations of relevant thermodynamic,kinetic,and spectroscopic properties.J Am Chem Soc,2004,126:13044-13053
    28 Kundu S,Choliy Y,Zhuo G,et al.Rational design and synthesis of highly active pincer-iridium catalysts for alkane dehydrogenation.Organometallics,2009,28:5432-5444
    29 Punji B,Emge T J,Goldman A S.A highly stable adamantly-substituted pincer-ligated iridium catalyst for alkane dehydrogenation.Organometallics,2010,29:2702-2709
    30 Adams J J,Arulsamy N,Roddick D M.Investigation of iridium CF3PCP pincer catalytic dehydrogenation and decarbonylation chemistry.Organometallics,2012,31:1439-1447
    31 G?ttker-Schnetmann I,Brookhart M.Mechanistic studies of the transfer dehydrogenation of cyclooctane catalyzed by iridium bis(phosphinite)p-XPCP pincer complexes.J Am Chem Soc,2004,126:9330-9338
    32 G?ttker-Schnetmann I,White P,Brookhart M.Iridium bis(phosphinite)p-XPCP pincer complexes:Highly active catalysts for the transfer dehydrogenation of alkanes.J Am Chem Soc,2004,126:1804-1811
    33 Huang Z,Brookhart M,Goldman A S,et al.Highly active and recyclable heterogeneous iridium pincer catalysts for transfer dehydrogenation of alkanes.Adv Synth Catal,2009,351:188-206
    34 Yao W,Zhang Y,Jia X,et al.Selective catalytic transfer dehydrogenation of alkanes and heterocycles by an iridium pincer complex.Angew Chem Int Ed,2014,53:1390-1394
    35 Leveson-Gower R B,Webb P B,Cordes D B,et al.Synthesis,characterization,and catalytic properties of iridium pincer complexes containing NH linkers.Organometallics,2018,37:30-39
    36 Haenel M W,Oevers S,Angermund K,et al.Thermally stable homogeneous catalysts for alkane dehydrogenation.Angew Chem Int Ed,2001,40:3596-3600
    37 Kuklin S A,Sheloumov A M,Dolgushin F M,et al.Highly active iridium catalysts for alkane dehydrogenation.Synthesis and properties of iridium bis(phosphine)pincer complexes based on ferrocene and ruthenocene.Organometallics,2006,25:5466-5476
    38 Shi Y,Suguri T,Dohi C,et al.Highly active catalysts for the transfer dehydrogenation of alkanes:Synthesis and application of novel7-6-7 ring-based pincer iridium complexes.Chem Eur J,2013,19:10672-10689
    39 Bézier D,Brookhart M.Applications of PC(sp3)P iridium complexes in transfer dehydrogenation of alkanes.ACS Catal,2014,4:3411-3420
    40 Yao W,Jia X,Leng X,et al.Catalytic alkane transfer-dehydrogenation by PSCOP iridium pincer complexes.Polyhedron,2016,116:12-19
    41 Raynal M,Pattacini R,Cazin C S J,et al.Reaction intermediates in the synthesis of new hydrido,N-heterocyclic dicarbene iridium(III)pincer complexes.Organometallics,2009,28:4028-4047
    42 Chianese A R,Drance M J,Jensen K H,et al.Acceptorless alkane dehydrogenation catalyzed by iridium CCC-pincer complexes.Organometallics,2014,33:457-464
    43 Jia X,Zhang L,Qin C,et al.Iridium complexes of new NCP pincer ligands:Catalytic alkane dehydrogenation and alkene isomerization.Chem Commun,2014,50:11056-11059
    44 Jia X,Huang Z.Synthesis and characterization of a tetradentate PNCP iridium complex for catalytic alkane dehydrogenation.Sci China Chem,2015,58:1340-1344
    45 Brayton D F,Beaumont P R,Fukushima E Y,et al.Synthesis,characterization,and dehydrogenation activity of an iridium arsenic based pincer catalyst.Organometallics,2014,33:5198-5202
    46 Tanoue K,Yamashita M.Synthesis of pincer iridium complexes bearing a boron atom and i Pr-substituted phosphorus atoms:Application to catalytic transfer dehydrogenation of alkanes.Organometallics,2015,34:4011-4017
    47 Allen K E,Heinekey D M,Goldman A S,et al.Alkane dehydrogenation by C-H activation at iridium(III).Organometallics,2013,32:1579-1582
    48 Allen K E,Heinekey D M,Goldman A S,et al.Regeneration of an iridium(III)complex active for alkane dehydrogenation using molecular oxygen.Organometallics,2014,33:1337-1340
    49 Gao Y,Guan C,Zhou M,et al.β-Hydride elimination and C-H activation by an iridium acetate complex,catalyzed by lewis acids.Alkane dehydrogenation cocatalyzed by lewis acids and[2,6-bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl]iridium.J Am Chem Soc,2017,139:6338-6350
    50 Yuan H,Brennessel W W,Jones W D.Effect of carboxylate ligands on alkane dehydrogenation with(dm Phebox)Ir Complexes.ACSCatal,2018,8:2326-2329
    51 Bezier D,Guan C,Krogh-Jespersen K,et al.Experimental and computational study of alkane dehydrogenation catalyzed by a carbazolide-based rhodium PNP pincer complex.Chem Sci,2016,7:2579-2586
    52 Gruver B C,Adams J J,Warner S J,et al.Acceptor pincer chemistry of ruthenium:Catalytic alkane dehydrogenation by(CF3PCP)Ru(cod)(H).Organometallics,2011,30:5133-5140
    53 Adams J J,Gruver B C,Donohoue R,et al.Acceptor pincer Ru(II)chemistry.Dalton Trans,2012,41:12601-12611
    54 Zhang Y,Fang H,Yao W,et al.Synthesis of pincer hydrido ruthenium olefin complexes for catalytic alkane dehydrogenation.Organometallics,2016,35:181-188
    55 Khaskin E,Lew D L,Pal S,et al.Homogeneous catalytic transfer dehydrogenation of alkanes with a group 10 metal center.Chem Commun,2009,41:6270-6272
    56 Solowey D P,Mane M V,Kurogi T,et al.A new and selective cycle for dehydrogenation of linear and cyclic alkanes under mild conditions using a base metal.Nat Chem,2017,9:1126-1132
    57 Kocal J A,Vora B V,Imai T.Production of linear alkylbenzenes.Appl Catal A,2001,221:295-301
    58 Smie?kováA,RojasováE,Hudec P,et al.Aromatization of light alkanes over ZSM-5 catalysts:Influence of the particle properties of the zeolite.Appl Catal A,2004,268:235-240
    59 MéRiaudeau P,Naccache C.Dehydrocyclization of alkanes over zeolite-supported metal catalysts:Monofunctional or bifunctional route.Catal Rev Sci Eng,1997,39:5-48
    60 Hino M,Arata K.Dehydrocyclization of hexane to benzene over zirconia-supported chromia.J Chem Soc Chem Commun,1987,(18):1355-1356
    61 Ahuja R,Punji B,Findlater M,et al.Catalytic dehydroaromatization of n-alkanes by pincer-ligated iridium complexes.Nat Chem,2011,3:167-171
    62 Kundu S,Lyons T W,Brookhart M.Synthesis of piperylene and toluene via transfer dehydrogenation of pentane and pentene.ACSCatal,2013,3:1768-1773
    63 Lyons T W,Guironnet D,Findlater M,et al.Synthesis of p-xylene from ethylene.J Am Chem Soc,2012,134:15708-15711
    64 Goldman A S,Roy A H,Huang Z,et al.Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis.Science,2006,312:257-261
    65 Haibach M C,Kundu S,Brookhart M,et al.Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.Acc Chem Res,2012,45:947-958
    66 Leitch D C,Lam Y C,Labinger J A,et al.Upgrading light hydrocarbons via tandem catalysis:A dual homogeneous Ta/Ir system for alkane/alkene coupling.J Am Chem Soc,2013,13:10302-10305
    67 Blanksby S J,Ellison G B.Bond dissociation energies of organic molecules.Acc Chem Res,2003,36:255-263
    68 Tse C W,Chow T W S,Guo Z,et al.Nonheme iron mediated oxidation of light alkanes with oxone:Characterization of reactive oxoiron(IV)ligand cation radical intermediates by spectroscopic studies and DFT calculations.Angew Chem Int Ed,2014,53:798-803
    69 Liu W,Groves J T.Manganese catalyzed C-H halogenation.Acc Chem Res,2015,48:1727-1735
    70 Hartwig J F,Larsen M A.Undirected,homogeneous C-H bond functionalization:challenges and opportunities.ACS Cent Sci,2016,2:281-292
    71 Díaz-Requejo M M,Pérez P J.Coinage metal catalyzed C-H bond functionalization of hydrocarbons.Chem Rev,2008,108:3379-3394
    72 Thu H Y,Tong G S M,Huang J S,et al.Highly selective metal catalysts for intermolecular carbenoid insertion into primary C-H bonds and enantioselective C-C bond formation.Angew Chem Int Ed,2008,47:9747-9751
    73 Caballero A,Despagnet-Ayoub E,Mar Díaz-Requejo M,et al.Silver-catalyzed C-C bond formation between methane and ethyl diazoacetate in supercritical CO2.Science,2011,332:835-838
    74 Liao K,Negretti S,Musaev D G,et al.Site-selective and stereoselective functionalization of unactivated C-H bonds.Nature,2016,533:230-234
    75 Chen H,Schlecht S,Semple T C,et al.Thermal,catalytic,regiospecific functionalization of alkanes.Science,2000,287:1995-1997
    76 Mkhalid I A I,Barnard J H,Marder T B,et al.C-H activation for the construction of C-B bonds.Chem Rev,2010,110:890-931
    77 Jia X,Huang Z.Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerizationhydrosilylation.Nat Chem,2016,8:157-161
    78 Tang X,Jia X,Huang Z.Thermal,catalytic conversion of alkanes to linear aldehydes and linear amines.J Am Chem Soc,2018,140:4157-4163
    79 Dupuy S,Zhang K F,Goutierre A S,et al.Terminal-selective functionalization of alkyl chains by regioconvergent cross-coupling.Angew Chem Int Ed,2016,55:14793-14797
    80 Juliá-Hernández F,Moragas T,Cornella J,et al.Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide.Nature,2017,545:84-88
    81 Tang Y.Transforming alkanes to alkylsilanes.Sci Bull,2016,61:914-916
    82 Tondreau A M,Atienza C C H,Weller K J,et al.Iron catalysts for selective anti-markovnikov alkene hydrosilylation using tertiary silanes.Science,2012,335:567-570
    83 Zhang L,Peng D,Leng X,et al.Iron-catalyzed,atom-economical,chemo-and regioselective alkene hydroboration with pinacolborane.Angew Chem Int Ed,2013,52:3676-3680
    84 Franke R,Selent D,B?rner A.Applied hydroformylation.Chem Rev,2012,112:5675-5732
    85 Keim W.Oligomerization of ethylene toα-olefins:Discovery and development of the shell higher olefin process(SHOP).Angew Chem Int Ed,2013,52:12492-12496
    86 Sakakura T,Tanaka M.Efficient catalytic C-H activation of alkanes:Regioselective carbonylation of the terminal methyl group of n-pentane by Rh Cl(CO)(PMe3)2.J Chem Soc Chem Commun,1987,(10):758-759
    87 Sakakura T,Sodeyama T,Sasaki K,et al.Carbonylation of hydrocarbons via carbon-hydrogen activation catalyzed by Rh Cl(CO)(PMe3)2under irradiation.J Am Chem Soc,1990,112:7221-7229
    88 Boese W T,Goldman A S.Photochemical cyclohexane carbonylation cocatalyzed by d8 transition metal carbonyls and aromatic ketones and aldehydes.J Am Chem Soc,1992,114:350-351
    89 Jaynes B S,Hill C L.Radical carbonylation of alkanes via polyoxotungstate photocatalysis.J Am Chem Soc,1995,117:4704-4705
    90 Billing E,Abatjoglou A G,Bryant D R.Bis-phosphite compounds.US Patent,4748261,1988
    91 Behr A,Obst D,Schulte C,et al.Highly selective tandem isomerization-hydroformylation reaction of trans-4-octene to n-nonanal with rhodium-biphephos catalysis.J Mol Catal A Chem,2003,206:179-184
    92 Klein H,Jackstell R,Wiese K D,et al.Highly selective catalyst systems for the hydroformylation of internal olefins to linear aldehydes.Angew Chem Int Ed,2001,40:3408-3411
    93 Seayad A,Ahmed M,Klein H,et al.Internal olefins to linear amines.Science,2002,297:1676-1678
    94 Burnett R L,Hughes T R.Mechanism and poisoning of the molecular redistribution reaction of alkanes with a dual functional catalyst system.J Catal,1973,31:55-64
    95 Basset J M,Copéret C,Lefort L,et al.Primary products and mechanistic considerations in alkane metathesis.J Am Chem Soc,2005,127:8604-8605
    96 Vidal V,Théolier A,Thivolle-Cazat J,et al.Metathesis of alkanes catalyzed by silica-supported transition metal hydrides.Science,1997,276:99-102
    97 Nawara-Hultzsch A J,Hackenberg J D,Punji B,et al.Rational design of highly active“hybrid”phosphine-phosphinite pincer iridium catalysts for alkane metathesis.ACS Catal,2013,3:2505-2514
    98 Dobereiner G E,Yuan J,Schrock R R,et al.Catalytic synthesis of n-alkyl arenes through alkyl group cross-metathesis.J Am Chem Soc,2013,135:12572-12575
    99 Jia X,Qin C,Friedberger T,et al.Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions.Sci Adv,2016,2:e1501591
    100 Tang Y.Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions(in Chinese).Acta Polym Sin,2017,(1):1-2[唐勇.聚乙烯废塑料温和可控降解为燃油和聚乙烯蜡.高分子学报,2017,(1):1-2]
    101 Biswas S,Huang Z,Choliy Y,et al.Experimental evidence for anη3-allyl pathway and an unconventional mechanism predicted by DFTcalculations.J Am Chem Soc,2012,134:13276-13295
    102 Kumar A,Zhou T,Emge T J,et al.Dehydrogenation of n-alkanes by solid-phase molecular pincer-iridium catalysts:High yields ofα-olefin product.J Am Chem Soc,2015,137:9894-9911

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700