Effect of Cu addition on microstructures and tensile properties of high-pressure die-casting Al-5.5Mg-0.7Mn alloy
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Cu addition on microstructures and tensile properties of high-pressure die-casting Al-5.5Mg-0.7Mn alloy
  • 作者:Lingyang ; Yuan ; Liming ; Peng ; Jingyu ; Han ; Baoliang ; Liu ; Yujuan ; Wu ; Juan ; Chen
  • 英文作者:Lingyang Yuan;Liming Peng;Jingyu Han;Baoliang Liu;Yujuan Wu;Juan Chen;National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites,School of Materials Science and Engineering,Shanghai Jiaotong Univerisity;Shanghai Light Alloy Net Forming National Engineering Research Center Co.,Ltd.;
  • 英文关键词:Die casting;;Al-Mg alloys;;Cu addition;;Al_2 CuMg phase;;Tensile properties
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites,School of Materials Science and Engineering,Shanghai Jiaotong Univerisity;Shanghai Light Alloy Net Forming National Engineering Research Center Co.,Ltd.;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported financially by the National Key Research and Development Program of China (No. 2016YFB0301001)
  • 语种:英文;
  • 页:CLKJ201906009
  • 页数:10
  • CN:06
  • ISSN:21-1315/TG
  • 分类号:63-72
摘要
In this study, Cu was added into the high-pressure die-casting Al-5.5 Mg-0.7 Mn(wt%) alloy to improve the tensile properties. The effects of Cu addition on the microstructures, mechanical properties of the Al-5.5 Mg-0.7 Mn alloys under both as-cast and T5 treatment conditions have been investigated. Additions of 0.5 wt%, 0.8 wt% and 1.5 wt% Cu can lead to the formation of irregular-shaped Al_2 CuMg particles distributed along the grain boundaries in the as-cast alloys. Furthermore, the rest of Cu can dissolve into the matrixes. The lath-shaped Al_2 CuMg precipitates with a size of 15–20 nm × 2–4 nm were generated in the T5-treated Al-5.5 Mg-0.7 Mn-x Cu(x = 0.5, 0.8, 1.5 wt%) alloys. The room temperature tensile and yield strengths of alloys increase with increasing the content of Cu. Increasing Cu content results in more Al_2 CuMg phase formation along the grain boundaries, which causes more cracks during tensile deformation and lower ductility. Al-5.5 Mg-0.7 Mn-0.8 Cu alloy exhibits excellent comprehensive tensile properties under both as-cast and T5-treated conditions. The yield strength of 179 MPa, the ultimate tensile strength of 303 MPa and the elongation of 8.7% were achieved in the as-cast Al-5.5 Mg-0.7 Mn-0.8 Cu alloy, while the yield strength significantly was improved to 198 MPa after T5 treatment.
        In this study, Cu was added into the high-pressure die-casting Al-5.5 Mg-0.7 Mn(wt%) alloy to improve the tensile properties. The effects of Cu addition on the microstructures, mechanical properties of the Al-5.5 Mg-0.7 Mn alloys under both as-cast and T5 treatment conditions have been investigated. Additions of 0.5 wt%, 0.8 wt% and 1.5 wt% Cu can lead to the formation of irregular-shaped Al_2 CuMg particles distributed along the grain boundaries in the as-cast alloys. Furthermore, the rest of Cu can dissolve into the matrixes. The lath-shaped Al_2 CuMg precipitates with a size of 15–20 nm × 2–4 nm were generated in the T5-treated Al-5.5 Mg-0.7 Mn-x Cu(x = 0.5, 0.8, 1.5 wt%) alloys. The room temperature tensile and yield strengths of alloys increase with increasing the content of Cu. Increasing Cu content results in more Al_2 CuMg phase formation along the grain boundaries, which causes more cracks during tensile deformation and lower ductility. Al-5.5 Mg-0.7 Mn-0.8 Cu alloy exhibits excellent comprehensive tensile properties under both as-cast and T5-treated conditions. The yield strength of 179 MPa, the ultimate tensile strength of 303 MPa and the elongation of 8.7% were achieved in the as-cast Al-5.5 Mg-0.7 Mn-0.8 Cu alloy, while the yield strength significantly was improved to 198 MPa after T5 treatment.
引文
[1] A.I. Taub, A.A. Luo, MRS Bull. 40(2015)1045–1054.
    [2] G.S. Cole, A.M. Sherman, Mater. Charact. 35(1995)3–9.
    [3] A. Morita, Toyohashi, Aichi-ken, Japan, July 5–10Proceedings to the 6th International Conference on Aluminium Alloys1998, Proceedings to the 6th International Conference on Aluminium Alloys(1998).
    [4] W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler, A.Vieregge, Mater. Sci. Eng. A 280(2000)37–49.
    [5] J. Du, M. Ouyang, J. Chen, Energy 120(2016)584–596.
    [6] Q. Liu, Y. Lin, Z. Zong, G. Sun, Q. Li, Compos. Struct. 97(2013)231–238.
    [7] P. Egede, Environmental Assessment of Lightweight Electric Vehicles, first ed.,Springer, Braunschweig, 2017, pp. 9–18.
    [8] J. Du, D. Ouyang, Appl. Energy 188(2017)529–546.
    [9] G. Davies, Materials for Automobile Bodies, second ed.,Butterworth-Heinemann, Oxford, 2013, pp. 128–129.
    [10] M.V. Glazoff, Casting Aluminum Alloys, first ed., Elsevier, Amsterdam, 2007,pp. 327–390.
    [11] F. Bonollo, N. Gramegna, G. Timelli, JOM 67(2015)901–908.
    [12] H.C. Liao, M. Zhang, J.J. Bi, K. Ding, X. Xi, S.Q. Wu, J. Mater. Sci. Technol. 26(2010)1089–1097.
    [13] S. Ji, D. Watson, Z. Fan, M. White, Mater. Sci. Eng. A 556(2012)824–833.
    [14] J.G. Kaufman, E. Rooy, Aluminum Alloy Castings Properties, Processes, and Applications, first ed., ASM International, Ohio, 2007, pp. 69–92.
    [15] H. Yang, S. Ji, Z. Fan, Mater. Des. 85(2015)823–832.
    [16] S. Ji, Y. Wang, D. Watson, Z. Fan, Metall. Mater. Trans. A 44(2013)3185–3197.
    [17] Z. Yan, X. Liu, H. Fang, J. Mater. Sci. Technol. 32(2016)1378–1385.
    [18] F. Casarotto, A.J. Franke, R. Franke, Advanced Materials in Automotive Engineering, first ed., Cambridge, Woodhead, 2012, pp. 109–149.
    [19] P. Zhang, Z. Li, B. Liu, W. Ding, L. Peng, Mater. Sci. Eng. A 651(2016)376–390.
    [20] G.B. Burger, A.K. Gupta, P.W. Jeffrey, D.J. Lloyd, Mater. Charact. 35(1995)23–39.
    [21] J. Hirsch, Mater. Trans. 52(2011)818–824.
    [22] H. Halim, D.S. Wilkinson, M. Niewczas, Acta Mater. 55(2007)4151–4160.
    [23] P. Ratchev, B. Verlinden, P. De Smet, P. Van Houtte, Acta Mater. 46(1998)3523–3533.
    [24] Z. Zhu, M.J. Starink, Mater. Sci. Eng. A 488(2008)125–133.
    [25] L.F. Mondolfo, Aluminum Alloys:Structure and Properties, first ed., Butter Worths, London, 1976, pp. 759–806.
    [26] I. Polmear, D. StJohn, J.F. Nie, M. Qian, Light Alloys:Metallurgy of the Light Metals, first ed., Butter Worths, London, 2017, pp. 265–286.
    [27] L. Zuo, B. Ye, J. Feng, X. Kong, H. Jiang, W. Ding, J. Mater. Sci. Technol. 34(2018)1222–1228.
    [28] L. Ding, Z. Jia, Z. Zhang, R.E. Sanders, Q. Liu, G. Yang, Mater. Sci. Eng. A 627(2015)119–126.
    [29] M. Voncˇina, N. Mocˇnik, A. Nagode, A. Stoi c, M. Bizjak, Teh. Vjesn. 24(2017)229–231.
    [30] G. Timelli, A. Fabrizi, Metall. Mater. Trans. A 45(2014)5486–5498.
    [31] P. Zhang, Z. Li, B. Liu, W. Ding, J. Mater. Sci. Technol. 33(2017)367–378.
    [32] L. Kovarik, M.K. Miller, S.A. Court, M.J. Mills, Acta Mater. 54(2006)1731–1740.
    [33] L. Kovarik, P.I. Gouma, C. Kisielowski, S.A. Court, M.J. Mills, Acta Mater. 52(2004)2509–2520.
    [34] J. Zhang, N. Gao, M.J. Starink, Mater. Sci. Eng. A 527(2010)3472–3479.
    [35] V. Radmilovic, R. Kilaas, U. Dahmen, G.J. Shiflet, Acta Mater. 47(1999)3987–3997.
    [36] L. Kovarik, P.I. Gouma, C. Kisielowski, S.A. Court, M.J. Mills, Mater. Sci. Eng. A387(2004)326–330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700