切花菊苗期抗寒性评价及相关的分子标记挖掘
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic Variation and Molecular Markers for Cold Tolerance of Cut-chrysanthemum Cultivars at Seedling Stage
  • 作者:徐婷婷 ; 马杰 ; 迟天华 ; 叶丹 ; 管志勇 ; 房伟民 ; 陈发棣 ; 张飞
  • 英文作者:XU Tingting;MA Jie;CHI Tianhua;YE Dan;GUAN Zhiyong;FANG Weimin;CHEN Fadi;ZHANG Fei;College of Horticulture, Nanjing Agricultural University;
  • 关键词:菊花 ; 抗寒性 ; 半致死温度 ; 关联分析 ; 分子标记
  • 英文关键词:Chrysanthemum;;cold tolerance;;semi-lethal temperature;;association analysis;;molecular marker
  • 中文刊名:HNXB
  • 英文刊名:Journal of Nuclear Agricultural Sciences
  • 机构:南京农业大学园艺学院;
  • 出版日期:2018-11-19 13:07
  • 出版单位:核农学报
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金(31572152);; 江苏省自然科学基金(BK20151429)
  • 语种:中文;
  • 页:HNXB201901028
  • 页数:9
  • CN:01
  • ISSN:11-2265/S
  • 分类号:205-213
摘要
为明确切花菊抗寒性的遗传变异,挖掘优异基因资源,本研究利用电导率结合Logistic方程评价83个切花菊品种苗期叶片的低温半致死温度(LT_(50)),通过关联分析探究抗寒性相关的优异等位变异位点并筛选抗性品种资源。结果表明,83个切花菊品种的LT_(50)在-10.99~1.86℃之间,变异系数为79.81%,说明切花菊抗寒性差异较大;依据LT_(50)的聚类分析将83份供试品种分为抗寒、中抗寒、低抗寒和不抗寒4种类型,分别占21.67%、22.89%、32.53%和22.89%。基于混合线性模型进行关联分析,共检测到11个等位变异位点(P<0.01),表型效应值为-3.51~0.83,表型变异贡献率为11.54%~18.83%;其中8个变异位点表现为增效,特别是携带E7M12-13位点品种的耐寒性显著(P<0.01)高于未携带该位点的品种。此外,根据增效位点挖掘到南农金柠檬、Qx097、QD028、Qx049、Qx153和Qx008等6个抗寒性强的品种资源。本研究结果为今后菊花耐寒性的遗传改良和分子标记辅助育种奠定了重要基础。
        To make clear the genetic variation for cold tolerance and to dig associated elite alleles in cut chrysanthemum, the present study was set out to assess the cold tolerance in terms of semi-lethal temperature(LT_(50)) in a panel of 83 cultivars at seedling stage using the relative electric conductivity and logistic equation. The favorable alleles responsible for cold tolerance were analyzed via association analysis. The results showed that LT_(50) varied between-10.99~1.86℃ with a variation coefficient of 79.81%, which indicated a high level of genetic variation for the cold tolerance in the investigated cut chrysanthemums. LT_(50)-based cluster analysis grouped the 83 cut chrysanthemums into 4 types, including tolerant(21.67%), moderate tolerant(22.89%), low tolerant(32.53%) and cold-sensitive cultivars(22.89%). The mix linear model-based association analysis identified 11 SSR markers that were significantly associated with LT_(50)(P<0.01), with phenotypic effect in a range of-3.51~0.83 and individually explained phenotypic variation varying in 11.54%~18.83%. In the 11 significant alleles, 8 favorable alleles were helpful to enhance cold tolerance, particularly the E7 M12-13 showed a significant level of phenotypic effect on LT_(50) at P<0.01, and 6 cold-tolerant cultivars, i.e., Nannong Jinningmeng, Qx097, QD028, Qx049, Qx153, and Qx008 that carry the favorable allele were finally screened out for future use. The findings of the present study add new understanding to the genetic variation of cold tolerance in cut chrysanthemum and will provide guidelines for genetic improvement and molecular marker assisted selection breeding for the target trait in future.
引文
[1] 张超, 高金锋, 李彦慧, 李玲. 低温对2种玉兰花色及相关酶活性的影响[J]. 林业科学, 2012, 48(7):56-60
    [2] Sumitomo K, Higuchi Y, Yamagata A, Hisamatsu T. Memory of prolonged winter cold inhibits flowering and increases long-day leaf number in the chrysanthemum cultivar ‘Nagano Queen’[J]. Journal of Horticultural Science & Biotechnology, 2013, 88(3): 361-367
    [3] Kim D C, Anderson N O. Comparative analysis of laboratory freezing methods to establish cold tolerance of detached rhizomes and intact crowns in garden chrysanthemum (Dendranthema × grandiflora Tzvelv.)[J]. Scientia Horticulturae, 2006, 109: 345-352
    [4] 许瑛, 陈发棣. 菊花8个品种的低温半致死温度及其抗寒适应性[J]. 园艺学报, 2008, 35(4): 559-564
    [5] 许瑛, 陈煜, 陈发棣, 陈素梅. 菊花耐寒特性分析及其评价指标的确定[J]. 中国农业科学, 2009, 42(3): 974-981
    [6] 李娜, 房伟民, 陈发棣, 陈素梅, 陈煜. 切花寒菊小花对低温胁迫的生理响应及其抗寒性分析[J]. 西北植物学报, 2010, 30(4): 645-651
    [7] Chen Y, Jiang J, Chang Q, Gu C, Song A, Chen S, Dong B, Chen F. Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two Chrysanthemum species[J]. Molecular Biology Reports, 2014, 41: 815-822
    [8] Huang H, Wang Y, Wang S, Wu X, Yang K, Niu Y, Dai S. Transcriptome-wide survey and expression of stress-responsive NAC genes in Chrysanthemum lavandulifolium[J]. Plant Science, 2012, 193/194: 18-27
    [9] Chen L, Chen Y, Jiang J, Chen S, Chen F, Guan Z, Fang W. The constitutive expression of Chrysanthemum dichrum ICE1 in Chrysanthemum grandiflorum improves the level of low temperature, salinity and drought tolerance[J]. Plant Cell Reports, 2012,31: 1747-1758
    [10] Chen Y, Jiang J, Song A, Chen S, Shan H, Luo H, GuoC, Sun J, Zhu L, Fang W, Chen F. Ambient temperature enhanced freezing tolerance of Chrysanthemum dichrum CdICE1 Arabidopsis via miR398[J]. BMC Biology, 2013, 11: 121
    [11] Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z, Hong B, Gao J. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis[J]. Plant Cell, 2014, 26: 2038-2054
    [12] 张晓娇, 史春凤, 李春水, 高俊平, 洪波. 转AtDREB1A基因地被菊杂交后代优株耐寒性分析[J]. 园艺学报, 2011, 38(9): 1717-1726
    [13] Cheng X, Chen S, Chen F, Fang W, Deng Y, She L. Interspecific hybrids between Dendranthema morifolium (Ramat.) Kitamura and D. nankingense (Nakai) Tzvel. achieved using ovary rescue and their cold tolerance characteristics[J]. Euphytica, 2010, 172: 101-108
    [14] Deng Y, Chen S, Chen F, Cheng X, Zhang F. The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance[J]. Plant Cell Reports, 2011, 30: 2177-2186
    [15] 朱文莹, 刘新春, 房伟民, 管志勇, 陈素梅, 蒋甲福, 陈发棣. 小菊品种‘钟山金桂’与亚菊属细裂亚菊F1回交后代的性状遗传表现[J]. 中国农业科学, 2012, 45(18): 3812-3819
    [16] Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F. Genetic diversity population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.)[J]. Molecular Genetics and Genomics, 2016, 291(3): 1117-1125
    [17] 郭海林, 刘建秀, 朱雪花, 郭爱桂. 结缕草属杂交后代抗寒性评价[J]. 草地学报, 2006, 14(1): 24-28
    [18] Lan W, Xu S, Zhu X. Effects of low temperature on Chrysanthemum shiwogiku var. kinokuniense in vitro conservation[J]. Bangladesh Journal of Botany, 2015, 44(4): 675-678
    [19] Breseghello F, Sorrells M E. Association analysis as a strategy for improvement of quantitative traits in plants [J]. Crop Science, 2006, 46(3): 1323-1330
    [20] Su J, Zhang F, Li P, Guan Z, Fang W, Chen F. Genetic variation and association mapping of waterlogging tolerance in chrysanthemum[J]. Planta, 2016, 244(6): 1241-1252
    [21] Dexter S T, Tottingham W E, Graber L F. Preliminary results in measuring the hardiness of plants [J]. Plant Physiology, 1930, 5(2):215-223
    [22] Yadav S K. Cold stress tolerance mechanisms in plant. A review[J]. Agronomy for Sustainable Development, 2010, 30(3): 515-527
    [23] Cornelissen J H C, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich D E, Reich P B, Steege H T, Morgan H D, van der Heijden M G A, Pausas J G, Poorter H. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4):335-380
    [24] 叶艳然, 王文莉, 郑成淑, 付德静, 刘慧雯 四种野生苔草属植物的耐寒性评价[J]. 应用生态学报, 2017, 28(1): 89-95
    [25] 王腾飞, 裴玉贺, 郭新梅, 李军, 宋希云. 3个玉米品种苗期耐寒性鉴[J]. 核农学报, 2017, 31(4): 803-808
    [26] 薛云云, 白冬梅, 田跃霞, 权宝全. 24份山西花生资源芽期和苗期耐寒性鉴定[J]. 核农学报, 2018, 32(3): 582-590
    [27] 刘冰, 曹莎, 周泓, 夏宜平 杜鹃花品种耐寒性比较及其机制研究[J]. 园艺学报, 2016, 43(2): 295-306
    [28] 魏亮, 徐建飞, 卞春松, 段绍光, 胡军, 刘杰, 庞万福, 于卓, 金黎平. 中国主要马铃薯栽培品种抗寒性的鉴定与评价[J].植物生理学报, 2017, 53(5): 815-823
    [29] 王翠丽, 李永, 崔洋, 李永华.9个秋菊品种叶片脂肪酸组成及其抗寒性评价[J]. 西北农林科技大学学报(自然科学版), 2014, 42(11): 61-68
    [30] Strigens A, Freitag N M, Gilbert X, Grieder C, Riedelsheimer C, Schrag T A, Messmer R, Melchinger A E. Association mapping for chilling tolerance in elite flint and dent maize inbred lines evaluated in growth chamber and field experiments [J]. Plant Cell Environment, 2013, 36: 1871-1887
    [31] 刘其宝, 李黎贝, 张驰, 宿俊吉, 魏恒玲, 王寒涛, 喻树迅. 陆地棉叶片叶绿素含量与SSR 标记的关联分析及优异等位变异的挖掘[J]. 中国农业科学, 2017, 50(18): 3439-3449
    [32] 韩德鹏, 周灿, 郑伟, 李亚贞, 付东辉. 周庆红甘蓝型油菜主花序性状全基因组关联分析[J]. 核农学报, 2018, 32(3): 46-476
    [33] Huang J, Zhang J H, Li W, Hu W, Duan L C, Feng Y, Qiu F, Yue B. Genome-wide association analysis of ten chilling tolerance indices at the germination and seedling stages in miaze[J]. Journal of Integrative Plant Biology, 2013, 55(8): 735-744
    [34] Visioni A, Tondelli A, Francia E, Pswarayi A, Malosetti M, Russell J, Thomas W, Waugh R, Pecchioni N, Romagosa Ⅰ, Comadran J. Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.)[J]. BMC Genomics, 2013,14: 424
    [35] Fu X, Su J, Yu K, Cai Y, Zhang F, Chen S, Fang W, Chen F, Guan Z. Genetic variation and association mapping of aphid (Macrosiphoniella sanbourni) resistance in chrysanthemum (Chrysanthemum morifolium Ramat.)[J]. Euphytica, 2018, 214: 21
    [36] Chong X, Zhang F, Wu Y, Yang X, Zhao N, Wang H, Guan Z, Fang W, Chen F. A SNP-enabled assessment of genetic diversity, evolutionary relationships and the identification of candidate genes in chrysanthemum[J]. Genome Biology and Evolution, 2016, 8(12): 3661-3671

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700