纳米Si薄膜生长及其Monte-Carlo模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Growth and Monte-Carlo Simulation of the Nano-Si Film
  • 作者:Hafiz ; Shehzad ; Ahmed ; 赵红东 ; 韩铁成
  • 英文作者:Hafiz Shehzad Ahmed;Zhao Hongdong;Han Tiecheng;School of Electronic and Information Engineering,Hebei University of Technology;
  • 关键词:硅(Si) ; 纳米材料 ; 薄膜生长 ; 脉冲激光沉积(PLD) ; Monte-Carlo模拟
  • 英文关键词:silicon(Si);;nano material;;film growth;;pulsed laser deposition(PLD);;Monte-Carlo simulation
  • 中文刊名:BDTQ
  • 英文刊名:Micronanoelectronic Technology
  • 机构:河北工业大学电子信息工程学院;
  • 出版日期:2019-07-12
  • 出版单位:微纳电子技术
  • 年:2019
  • 期:v.56;No.507
  • 语种:中文;
  • 页:BDTQ201908013
  • 页数:4
  • CN:08
  • ISSN:13-1314/TN
  • 分类号:81-84
摘要
在玻璃衬底到靶的不同水平距离W (0.5、0.8和1.3 cm)条件下,使用脉冲激光沉积(PLD)方法分别制备了纳米Si薄膜。扫描电子显微镜(SEM)结果显示,在三种样品上形成的纳米Si颗粒尺寸会随W的增加而增大。为了解释该现象,使用Monte-Carlo方法模拟了薄膜生长。对粒子相互作用范围α和最大行走步长进行实验和筛选,当α取2时,随着粒子在衬底上最大行走步长的增大,薄膜生长方式从分散生长转化为簇状生长。仿真结果表明粒子岛的平均尺寸呈逐渐增大趋势,这与实验结果具有良好的一致性。因此,随着W的增加,Si原子落到衬底上时更大的初始动能是导致纳米Si颗粒尺寸增大的主要原因。
        Nano-Si films were prepared by the pulsed laser deposition(PLD)method under different horizontal distances W(0.5,0.8 and1.3 cm)from the glass substrate to the target,respectively.Scanning electron microscopy(SEM)results show that the sizes of nano-Si particles formed on three samples increase with the increase of W.To explain the phenomenon,the film growth was simulated by using the Monte-Carlo method.The experiment and screening of the particle interaction rangeαand the maximum walking step size were carried out.Whenα was taken as 2,the film growth mode changes from the dispersed growth to the cluster growth on the substrate as the maximum walking step size of the particles increases.The simulation results show that the average size of the particle islands tends to increase gradually,which is in good consistent with the experimental results.Therefore,with the increase of W,the larger initial kinetic energy for Si atoms falling onto the substrate is the main cause of the increase of the size of the nano-Si particles.
引文
[1]JEONG J S,CHAE M R,PARK H B,et al.Annealing effect on electrochemical properties of patterned Si film electrodes for thin-film batteries[J].Current Applied Physics,2018,18:S28-S32.
    [2]TIMMERMAN D,VALENTA J,DOHNALOVK,et al.Step-like enhancement of luminescence quantum yield of silicon nanocrystals[J].Nature Nanotechnology,2011,6(11):710-713.
    [3]卢辉东,铁生年.硅BC8量子点太阳能电池中的多重激子效应[J].发光学报,2018,39(5):668-673.
    [4]PERMINOV P A,DZHUN I O,EZHOV A A,et al.Creation of silicon nanocrystals using the laser ablation in liquid[J].Laser Physics,2011,21(4):801-804.
    [5]傅广生,丁学成,郭瑞强,等.脉冲激光沉积纳米硅晶粒流体模型的推广[J].物理学报,2011,60(1):737-741.
    [6]褚立志,于燕超,邓泽超,等.激光烧蚀硅靶下荷电粒子和纳米晶粒的电流响应研究[J].人工晶体学报,2016,45(7):1736-1740.
    [7]王晓平,赵特秀,吴锋民,等.超薄膜多中心生长过程的计算机模拟[J].物理学报,1999,48(8):1412-1419.
    [8]HAN M,GONG Y,ZHOU J,et al.Plume dynamics during film and nanoparticles deposition by pulsed laser ablation[J].Physics Letters:A,2002,302(4):182-189.
    [9]杨宁,陈光华,张阳,等.薄膜生长的理论模型与Monte Carlo模拟[J].物理学报,2000,49(11):2225-2229.
    [10]ITINA T E,SENTIS M,MARINE W.Synthesis of nanoclusters by nanosecond laser ablation:direct simulation Monte Carlo modelling[J].Applied Surface Science,2006,252(13):4433-4438.
    [11]郑小平,张佩峰,刘军,等.薄膜外延生长的计算机模拟[J].物理学报,2004,53(8):2687-2693.
    [12]叶健松,胡晓君.超薄膜外延生长的Monte Carlo模拟[J].物理学报,2002,51(5):1108-1112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700