甘蓝型油菜株高及其相关性状的主基因+多基因遗传分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mixed Major Gene Plus Poly-gene Genetic Analysis of Plant Height and Its Related Traits in Brassica napus L.
  • 作者:刘霞 ; 张冰冰 ; 马兵 ; 赵娜 ; 田正书 ; 秦梦凡 ; 王阳 ; 郎丽娜 ; 刘亚萍 ; 黄镇 ; 徐爱遐
  • 英文作者:LIU Xia;ZHANG Bingbing;MA Bing;ZHAO Na;TIAN Zhengshu;QIN Mengfan;WANG Yang;LANG Lina;LIU Yaping;HUANG Zhen;XU Aixia;College of Agronomy,Northwest A&F University;Yangling Experiment Station,Shaanxi Seed Administration Station;
  • 关键词:甘蓝型油菜 ; 株高 ; 主基因+多基因混合遗传模型 ; 遗传分析
  • 英文关键词:Brassica napus L.;;Plant height;;Mixed major gene plus poly-gene genetic model;;Genetic analysis
  • 中文刊名:XBNX
  • 英文刊名:Acta Agriculturae Boreali-occidentalis Sinica
  • 机构:西北农林科技大学农学院;陕西省种子管理站杨凌试验站;
  • 出版日期:2018-04-16 09:04
  • 出版单位:西北农业学报
  • 年:2018
  • 期:v.27
  • 基金:“十三五”国家重点研发计划(2016YFD0101300);; 陕西省科技统筹创新工程计划(2016KTCQ02-03)~~
  • 语种:中文;
  • 页:XBNX201804011
  • 页数:9
  • CN:04
  • ISSN:61-1220/S
  • 分类号:82-90
摘要
油菜株高对产量、抗逆性尤其是抗倒伏性有重要影响,适当降低株高可提高油菜抗性和收获指数进而提高产量。甘蓝型油菜(Brassica napus L.)矮秆自交系‘74-1002’具有早熟、分枝多、抗倒伏等优良性状,是进行油菜株高遗传和矮化育种的良好材料。以高秆甘蓝型油菜自交系‘HN92’为母本,‘74-1002’为父本,杂交构建6世代遗传群体(P1、P2、F1、F2、B1和B2),对6世代群体的株高及其相关性状进行度量,采用主基因+多基因混合遗传模型进行遗传分析。结果表明:株高(PH)、主花序长度(MIL)及一次有效分枝高度(VBH)均受到2对加性主基因控制,并存在加性—显性多基因效应,PH和MIL的最适遗传模型为E-0模型(MX2-ADI-ADI),VBH的最适遗传模型为E-3模型(MX2-A-AD);有效分枝节间距(IL)和有效分枝数(BN)的遗传均只受加性—显性—上位多基因控制,无主基因效应,其最适遗传模型为C-0模型(PG-ADI)。在B1、B2和F2世代中,PH的主基因+多基因遗传率最高,分别为71.22%、78.71%、81.87%;其次是VBH和MIL,分离世代主基因+多基因平均遗传率分别为57.10%和44.09%;IL和BN的遗传率偏低,3个世代主基因+多基因平均遗传率分别为15.24%和9.68%。相关性分析表明:PHVBH、MIL和IL的相关性表现为极显著的正相关,相关系数分别为0.533、0.721和0.520。因此,在甘蓝型油菜理想株高育种进程中,在早代对株高进行选择是有效的,该研究也为后期开展株高相关性状QTL分析奠定基础,有利于加快油菜株高分子标记辅助育种进程。
        Plant height of rapeseed plays an important role in yield and resistance,especially the lodging resistance.The yield can be increased through increasing harvest index and resistance,which can be realized by reducing the plant height properly.The dwarf inbred line,‘74-1002',with traits of early maturity,multiple valid branches and lodging resistance,is a suitable material for rapeseed breeding.In this study,‘74-1002'was served as male parent and‘HN92',another inbred line of Brassica napus L.with high plant height,was treated as female parent.Six generations(P1,P2,F1,F2,B1 and B2)derived from ‘HN92'ב74-1002'were used to measure the plant height related traits,and their inheritances were analyzed by mixed major gene plus poly-gene genetic model.Results showed that plant height(PH),first valid branch height(VBH)and main inflorescence length(MIL)were dominated by two pairs of additive major gene plus poly-gene with additive-dominant effects.PH and MIL were fitted the model of E-0(MX2-ADI-ADI)while first valid branch height(VBH)was fitted the model of E-3(MX2-A-AD).Internodal length(IL)and the numbers of valid branch(BN)were dominated by additive-dominant-epistatic poly-gene without major-gene effect and were fitted the model of C-0(PGADI).The heritabilities among segregating generations(B1,B2 and F2)of PH reached the highest,which were 71.22%,78.71%and 81.87%respectively,and were followed by the heritabilities of VBH and MIL,which were 57.10% and 44.09% on average.The heritabilities of IL and BN were much lower and were 15.24% and 9.68% on average.The correlation analysis showed that PH was significantly and positively correlated with VBH,MIL and IL,and the correlation coefficients were 0.533,0.721 and 0.520 respectively.To sum up,in the breeding process of ideal plant height in Brassica napus L.,the selection of plant height was effective in early generation.Also the study we made laid the foundation for QTL analysis of plant height relevant traits and was helpful to accelerate the progress of marker assisted breeding on rapeseed height.
引文
[1]HEDDEN P.The genes of the green revolution[J].Trends in Genetics Tig,2003,19(1):5-9.
    [2]浦惠明,戚存扣,傅寿仲.甘蓝型矮秆油菜‘矮源1号’鉴定研究初报[J].作物品种资源,1995(1):23-24.PU H M,QI C K,FU SH ZH.Preliminary study and identification of dwarf resource‘Aiyuan 1’in Brassica napus L.[J].China Seed Production,1995(1):23-24.
    [3]梅德圣,王汉中,李云昌,等.甘蓝型油菜矮秆突变体材料‘99CDAM’的发现及遗传分析[J].遗传,2006,28(7):851-857.MEI D SH,WANG H ZH,LI Y CH,et al.The discovery and genetic analysis of dwarf mutation‘99CDAM’in Brassica napus L.[J].Hereditas,2006,28(7):851-857.
    [4]李云,付绍红,杨进,等.甘蓝型油菜矮秆突变体bndf-1的遗传鉴定及利用潜力分析[J].中国农学通报,2013,29(13):173-177.LI Y,FU SH H,YANG J,et al.The identification and application of dwarf mutation bndf-1in Brassica napus[J].Chinese Agricultural Science Bulletin,2013,29(13):173-177.
    [5]WANG M L,ZHAO Y,CHEN F,et al.Inheritance and potentials of a mutated dwarfing gene ndF1in Brassica napus[J].Plant Breeding,2010,123(5):449-453.
    [6]FOISSET N,DELOURME R,BARRET P,et al.Molecular tagging of the dwarf BREIZH(Bzh)gene in Brassica napus[J].Theoretical and Applied Genetics,1995,91(5):756-761.
    [7]石淑稳,吴江生,刘后利.离体诱发甘蓝型油菜长角果和矮秆突变体[J].核农学报,1995,9(4):252-253.SHI SH W,WU J SH,LIU H L.The siliques and dwarf mutant of rapeseed induced in vitro[J].Acta Agriculturae Nucleatae Sinica,1995,9(4):252-253.
    [8]黄天带,吴江生,王令强,等.甘蓝型油菜矮秆突变体的遗传及其矮秆基因的RAPD标记[J].农业生物技术学报,2006,14(6):942-945.HUANG T D,WU J SH,WANG L Q,et al.Genetic analysis on a dwarf Brassica napus mutant and screening RAPDmarkers linked to the dwarfgene[J].Journal of Agricultural Biotechnology,2006,14(6):942-945.
    [9]WANG Y,HE J,YANG L,et al.Fine mapping of a major locus controlling plant height using a high-density singlenucleotide polymorphism map in Brassica napus[J].Theoretical and Applied Genetics,2016,129(8):1479-1491.
    [10]WANG Y,CHEN W,CHU P,et al.Mapping a major QTLresponsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach[J].BMC Plant Biology,2016,16(1):178.
    [11]盖钧镒,章元明,王建康.植物数量性状遗传体系[M].北京:北京科学出版社,2003:176-281,351-370.GAI J Y,ZHANG Y M,WANG J K.Genetic System of Quantitative Traits in Plants[M].Beijing:Science Press,2003:176-281,351-370.
    [12]陈学军,陈劲枫.辣椒株高遗传分析[J].西北植物学报,2006,26(7):1342-1345.CHEN X J,CHEN J F.Genetic analysis of plant height in pepper(Capsicum annuum L.)[J].Acta Agriculture Boreali-Occidentalia Sinica,2006,26(7):1342-1345.
    [13]蒋锋,刘鹏飞,曾慕衡,等.甜玉米株高的多世代遗传分析QTL定位[J].西北农林科技大学学报(自然科学版),2011,39(3):67-74.JIANG F,LIU P F,ZENG M H,et al.Genetic analysis and QTL mapping for plant height in corn[J].Journal of Northwest A&F University(Natural Science Edition),2011,39(3):67-74.
    [14]李军庆,崔翠,陈雪峰,等.油菜半矮秆新种质10D130株高主基因+多基因遗传模型分析[J].植物遗传资源学报,2013,14(4):641-646.LI J Q,CUI C,CHEN X F,et al.Genetic analysis of rapeseed plant height of new semi-dwaf germplasm 10D130using major gene plus polygene mixed genetic model[J].Journal of Plant Genetic Resources,2013,14(4):641-646.
    [15]周清元,李军庆,崔翠,等.油菜半矮杆新品系10D130株型性状的遗传分析[J].作物学报,2013,39(2):207-215.ZHOU Q Y,LI J Q,CUI C,et al.Genetic analysis of plant type in semi-dwarf new line(10D130)of rapeseed[J].Acta Agronomica Sinica,2013,39(2):207-215.
    [16]章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法[J].作物学报,2000,26(6):699-706.ZHANG Y M,GAI J Y.The IECM algorithm for estimation of component distribution parameters in segregating analysis of quantitative traits[J].Acta Agronomica Sinica,2000,26(6):699-706.
    [17]金岩,吕艳艳,付三雄,等.甘蓝型油菜苗期耐淹性状主基因+多基因遗传分析[J].作物学报,2014,40(11):1964-1972.JIN Y,LY Y,FU S X,et al.Inheritance of major gene plus polygene of water-logging tolerance in Brassica napus L.[J].Acta Agronomica Sinica,2014,40(11):1964-1972.
    [18]章元明,盖钧镒,张孟臣.利用P1F1P2和F2或F2:3世代联合的数量性状分离分析[J].西南农业大学学报,2000,22(1):6-9.ZHANG Y M,GAI J Y,ZHANG M CH.Jointly segregating analysis of P1F1P2and F2or F2:3families[J].Journal of Southwest Agricultural University,2000,22(1):6-9.
    [19]王玉刚,修文超,沈宝宇,等.白菜和白菜型油菜角果相关性状遗传分析[J].植物遗传资源学报,2013,4(3):547-552.WANG Y G,XIU W CH,SHEN B Y,et al.Genetic analysis of pod correlated traits in brassica campestris[J].Journal of Plant Genetic Resources,2013,4(3):547-552.
    [20]李静,陈士林,张怀胜,等.玉米穗轴粗的主基因+多基因遗传模型分析[J].河南农业科学,2015,44(5):38-41.LI J,CHEN SH L,ZHANG H SH,et al.Analysis on genetic model of major gene plus polygene for cob diameter of maize[J].Journal of Henan Agricultural Sciences,2015,44(5):38-41.
    [21]YAO M H,LI N,WANG F,et al.Genetic analysis and identification of QTLs for resistance to cucumber mosaic virus in chili pepper(Capsicum annuum L.)[J].Euphytica,2013,193(2):135-145.
    [22]刘兵.植物数量性状分离分析Windows软件包SEA的研制[D].南京:南京农业大学,2013.LIU B.SEA:a software package of segregation analysis of quantitative traits in plants[D].Nanjing:Nanjing Agricultural University,2013.
    [23]曹锡文,刘兵,章元明.植物数量性状分离分析Windows软件包SEA的研制[J].南京农业大学学报,2013,36(6):1-6.CAO X W,LIU B,ZHANG Y M.SEA:a software package of segregation analysis of quantitative traits in plants[J].Journal of Nanjing Agricultural University,2013,36(6):1-6.
    [24]张倩.甘蓝型油菜主要株型性状的遗传分析和QTL初步定位[D].重庆:西南大学,2013.ZHANG Q.Genetic effects analysis and QTL mapping of major plant-type traits in Brassica napus L.[D].Chongqing:Southwest University,2013.
    [25]江满霞,高冰可,卢列健,等.13个油菜品种的农艺性状遗传力和相关性分析[J].浙江农业科学,2015,56(4):472-474.JIANG M X,GAO B K,LU L J,et al.Heritability and correlation analysis of agronomic traits of 13rapeseed varieties[J].Journal of Zhejiang Agricultural Sciences,2015,56(4):472-474.
    [26]王春娥,盖钧镒,傅三雄,等.大豆豆腐和豆乳得率的遗传分析QTL定位[J].中国农业科学,2008,41(5):1274-1282.WANG CH E,GAI J Y,FU S X,et al.Inheritance and QTL mapping of tofu and soymilk output in soybean[J].Scientia Agricultura Sinica,2008,41(5):1274-1282.
    [27]王培,李晓林,杨林,等.小麦单株穗数的遗传分析及基于QTL定位的最优基因型预测[J].麦类作物学报,2012,32(5):820-827.WANG P,LI X L,YANG L,et al.Genetic analysis of spike number per plant in wheat and prediction of superior genotype based on QTL information[J].Journal of Triticeae Crops,2012,32(5):820-827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700