西藏热泉沉积物的硫氧化细菌多样性及其影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Distribution and diversity of sulfur-oxidizing bacteria in the surface sediments of Tibetan hot springs
  • 作者:甄莉 ; 吴耿 ; 杨渐 ; 蒋宏忱
  • 英文作者:Li Zhen;Geng Wu;Jian Yang;Hongchen Jiang;State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences;
  • 关键词:西藏 ; 热泉 ; 硫氧化细菌 ; 硫循环 ; soxB基因
  • 英文关键词:Tibet;;hot springs;;sulfur-oxidizing bacteria;;sulfur cycle;;soxB gene
  • 中文刊名:WSXB
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:中国地质大学(武汉)生物地质与环境地质国家重点实验室;
  • 出版日期:2019-05-10 09:40
  • 出版单位:微生物学报
  • 年:2019
  • 期:v.59;No.350
  • 基金:科技基础性工作专项(2015FY110100);; 国家自然科学基金项目(41502318);; 科技部国际合作重点项目(2013DFA31980);; 中央高校基本研科业务费专项~~
  • 语种:中文;
  • 页:WSXB201906010
  • 页数:16
  • CN:06
  • ISSN:11-1995/Q
  • 分类号:117-132
摘要
【目的】探究西藏热泉沉积物中硫氧化细菌群落多样性及其环境影响因素。【方法】选取西藏5个地热区的25个热泉样点,现场测量各采样点的水体理化参数,并采集热泉水和沉积物样品。通过功能基因(硫代硫酸盐水解酶编码基因:soxB)克隆文库分析方法,研究沉积物样品中硫氧化细菌群落的组成和多样性,并统计分析其与环境参数之间的相关性。【结果】克隆文库分析结果显示,西藏热泉沉积物样品中的硫氧化细菌主要分属于α-Proteobacteria、β-Proteobacteria和γ-Proteobacteria纲。研究样品中的硫氧化菌群落香农指数与溶解有机碳的浓度(R=0.489,P<0.05)呈显著正相关。另外,统计发现西藏各热泉之间的硫氧化菌群落组成差异较大,其优势硫氧化细菌种群差异明显,大多数样点的优势硫氧化细菌种群为β-Proteobacteria,少量样点以α-Proteobacteria和γ-Proteobacteria为主。Mantel检验结果显示,西藏热泉样品中的硫氧化细菌群落组成与温度、硫化物、电导率、海拔、总溶解固体和pH显著(P<0.05)相关。【结论】西藏热泉沉积物中的硫氧化细菌群落广泛分布,且主要以变形菌门为主。地理隔离和理化差异导致了热泉沉积物样品间的硫氧化菌群落组成差异。
        [Objective] To study the distribution and diversity of sulfur-oxidizing bacteria(SOB) in the surface sediments of Tibetan hot springs. [Methods] We collected 25 hot spring sediments from 5 Tibetan geothermal areas. In the field or laboratory, we measured the physicochemical parameters of water or sediment samples. We constructed soxB gene-based clone libraries and performed phylogenetic analysis to analyze the SOB community diversity. We conducted statistical analysis to assess the influencing factors on the SOB community. [Results]Phylogenetic analysis showed that the SOB mainly consisted of α-Proteobacteria, β-Proteobacteria andγ-Proteobacteria in the Tibetan hot spring sediments. The former were dominant classes. The dominant SOB classes differ among the sampled hot springs in our research: β-Proteobacteria were dominant in most of the studied samples, whereas only a few of them were dominated by α-Proteobacteria or γ-Proteobacteria. Mantel test showed that the SOB community composition of the studied samples significantly(P<0.05) correlated with altitude,conductivity, pH, sulfide, total dissolved solids and temperature. [Conclusion] In Tibetan hot spring sediments,α-Proteobacteria and β-Proteobacteria were the main SOB communities, but γ-Proteobacteria was rare. The SOB community structures differed significantly among the studied hot springs, which is mainly caused by their different physical and chemical properties.
引文
[1]Jacob C,Giles GI,Giles NM,Sies H.Sulfur and selenium:the role of oxidation state in protein structure and function.Angewandte Chemie International Edition,2003,42(39):4742-4758.
    [2]Canfield DE,Kristensen E,Thamdrup B.The sulfur cycle.Advances in Marine Biology,2005,48:313-381.
    [3]Hurtgen MT,Pruss SB,Knoll AH.Evaluating the relationship between the carbon and sulfur cycles in the later Cambrian ocean:An example from the Port au Port Group,western Newfoundland,Canada.Earth and Planetary Science Letters,2009,281(3/4):288-297.
    [4]陆栋.硫杆菌分离鉴定及无机硫氧化系统研究.兰州大学硕士学位论文,2006.
    [5]Lens PN,Kuenen JG.The biological sulfur cycle:novel opportunities for environmental biotechnology.Water Science and Technology,2001,44(8):57-66.
    [6]Mukhopadhyaya PN,Deb C,Lahiri C,Roy P.A soxA gene,encoding a diheme cytochrome c,and a sox locus,essential for sulfur oxidation in a new sulfur lithotrophic bacterium.Journal of Bacteriology,2000,182(15):4278-4287.
    [7]Rother D,Henrich HJ,Quentmeier A,Bardischewsky F,Friedrich CG.Novel genes of the sox gene cluster,mutagenesis of the flavoprotein SoxF,and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17.Journal of Bacteriology,2001,183(15):4499-4508.
    [8]Meyer B,Imhoff JF,Kuever J.Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system.Environmental Microbiology,2010,9(12):2957-2977.
    [9]Grimm F,Franz B,Dahl C.Thiosulfate and sulfur oxidation in purple sulfur bacteria//Dahl C,Friedrich CG.Microbial Sulfur Metabolism.Berlin Heidelberg:Springer,2008.
    [10]Anandham R,Indiragandhi P,Madhaiyan M,Ryu KY,Jee HJ,Sa TM.Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene(soxB)in rhizobacteria isolated from crop plants.Research in Microbiology,2008,159(9/10):579-589.
    [11]He PQ,Zilda DS,Li J,Zhang XL,Cui JJ,Bai YZ,Patantis G,Chasanah E.Diversity of microbe and hydrogenase genes from a coastal hot spring of Kalianda,Indonesia.Acta Oceanologica Sinica,2016,38(6):119-129.(in Chinese)何培青,Zilda DS,李江,张学雷,崔菁菁,白亚之,Patantis G,Chasanah E.印度尼西亚卡利安达岛近岸热泉微生物和氢酶基因的多样性.海洋学报,2016,38(6):119-129
    [12]Tourova TP,Slobodova NV,Bumazhkin BK,Kolganova TV,Muyzer G,Sorokin DY.Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker.FEMSMicrobiology Ecology,2013,84(2):280-289.
    [13]Huber JA,Butterfield DA,Baross JA.Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption.FEMS Microbiology Ecology,2003,43(3):393-409.
    [14]Shock EL,Holland M,Meyer-Dombard D,Amend JP,Osburn GR,Fischer TP.Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems,Yellowstone National Park,USA.Geochimica et Cosmochimica Acta,2010,74(14):4005-4043.
    [15]Konhauser KO,Jones B,Reysenbach AL,Renaut RW.Hot spring sinters:keys to understanding Earth’s earliest life forms.Canadian Journal of Earth Sciences,2003,40(11):1713-1724.
    [16]Hou WG,Wang S,Dong HL,Jiang HC,Briggs BR,Peacock JP,Huang QY,Huang LQ,Wu G,Zhi XY,Li WJ,Dodsworth JA,Hedlund BP,Zhang CL,Hartnett HE,Dijkstra P,Hungate BA.A comprehensive census of microbial diversity in hot springs of Tengchong,Yunnan Province China using 16SrRNA gene pyrosequencing.PLoS One,2013,8(1):e53350.
    [17]Wang S,Hou WG,Dong HL,Dong HC,Jiang HC,Huang LQ,Wu G,Zhang CL,Song ZQ,Zhang Y,Ren HL,Zhang J,Zhang L.Control of temperature on microbial community structure in hot springs of the Tibetan plateau.PLoS One,2013,8(5):e62901.
    [18]Bai JQ,Mei L,Yang ML.Geothermal resources and crustal thermal structure of the qinghai-tibet plateau.Journal of Geomechanics,2006,12(3):354-362.(in Chinese)白嘉启,梅琳,杨美伶.青藏高原地热资源与地壳热结构.地质力学学报,2006,12(3):354-362.
    [19]Sun HL,Ma F,Lin WJ,Liu Z,Wang GL,Nan DW.Geochemical characteristics and geothermometer application in high temperature geothermal field in Tibet.Geological Science and Technology Information,2015,34(3):171-177.(in Chinese)孙红丽,马峰,蔺文静,刘昭,王贵玲,男达瓦.西藏高温地热田地球化学特征及地热温标应用.地质科技情报,2015,34(3):171-177.
    [20]Huang QY,Dong CZ,Dong RM,Jiang HC,Wang S,Wang GH,Fang B,Ding XX,Niu L,Li X,Zhang CL,Dong HL.Archaeal and bacterial diversity in hot springs on the Tibetan Plateau,China.Extremophiles,2011,15(5):549-563.
    [21]Wang S,Hou WG,Dong HL,Jiang HC,Huang LQ,Wu G,Zhang CL,Song ZQ,Zhang Y,Ren HL,Zhang J,Zhang L.Control of temperature on microbial community structure in hot springs of the Tibetan Plateau.PLoS One,2013,8(5):62901.
    [22]Song ZQ,Wang FP,Zhi XY,Chen JQ,Zhou EM,Liang F,Xiao X,Tang SK,Jiang HC,Zhang CL,Dong H,Li WJ.Bacterial and archaeal diversities in Yunnan and Tibetan hot springs,China.Environmental Microbiology,2012,15(4):1160-1175.
    [23]Jiang HC,Dong HL,Zhang GX,Yu BS,Chapman LR,Fields MW.Microbial diversity in water and sediment of Lake Chaka,an athalassohaline lake in northwestern China.Applied and Environmental Microbiology,2006,72(6):3832-3845.
    [24]Petri R,Podgorsek L,Imhoff JF.Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria.FEMSMicrobiology Letters,2001,197(2):171-178.
    [25]Yang J,Jiang HC,Dong HL,Wu G,Hou WG,Zhao WY,Sun YJ,Lai ZP.Abundance and diversity of sulfur-oxidizing bacteria along a salinity gradient in four Qinghai-Tibetan Lakes,China.Geomicrobiology Journal,2013,30(9):851-860.
    [26]Blackwood CB.Analysing microbial community structure by means of terminal restriction fragment length polymorphism(T-RFLP)//Cooper JE,Rao JR.Molecular Approaches to Soil,Rhizosphere and Plant Microorganism Analysis.Cambridge:CAB International,2006.
    [27]Schloss PD,Westcott SL,Ryabin T,Hall JR,Hartmann M,Hollister EB,Lesniewski RA,Oakley BB,Parks DH,Robinson CJ,Sahl JW,Stres B,Thallinger GG,van Horn DJ,Weber CF.Introducing mothur:open-source,platform-independent,community-supported software for describing and comparing microbial communities.Applied and Environmental Microbiology,2009,75(23):7537-7541.
    [28]Khan IU,Habib N,Xiao M,Li MM,Xian WD,Hejazi MS,Tarhriz V,Zhi XY,Li WJ.Rhodobacter thermarum sp.nov.,a novel phototrophic bacterium isolated from sediment of a hot spring.Antonie van Leeuwenhoek,2019:1-9,doi:10.1007/s10482-018-01219-7.
    [29]Ramana VR,Kumar AK,Srinivas TNR,Sasikala C,Ramana CV.Rhodobacter aestuarii sp.nov.,a phototrophic alphaproteobacterium isolated from an estuarine environment.International Journal of Systematic and Evolutionary Microbiology,2009,59(5):1133-1136.
    [30]罗剑飞.硫氧化菌群落结构分析及其特性研究.华南理工大学博士学位论文,2011.
    [31]Albuquerque L,Rainey FA,Pena A,Tiago I,Veríssimo A,Nobre MF,Da Costa MS.Tepidamorphus gemmatus gen.nov.,sp.nov.,a slightly thermophilic member of the Alphaproteobacteria.Systematic and Applied Microbiology,2010,33(2):60-66.
    [32]Tirandaz H,Dastgheib SM,Amoozegar MA,Shavandi M,de La Haba RR,Ventosa A.Pseudorhodoplanes sinuspersici gen.nov.,sp.nov.,isolated from oil-contaminated soil.Journal of Systematic and Evolutionary Microbiology,2015,65(12):4743-4748.
    [33]Tourna M,Maclean P,Condron L,O’Callaghan M,Wakelin SA.Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis.FEMS Microbiology Ecology,2014,88(3):538-549.
    [34]Drobner E,Huber H,Rachel R,Stetter KO.Thiobacillus plumbophilus spec.nov.,a novel galena and hydrogen oxidizer.Archives of Microbiology,1992,157(3):213-217.
    [35]Strohl WR,Schmidt TM,Lawry NH,Mezzino MJ,Larkin JM.Characterization of Vitreoscilla beggiatoides and Vitreoscilla filiformis sp.nov.,nom.rev.,and comparison with Vitreoscilla stercoraria and Beggiatoa alba.International Journal of Systematic Bacteriology,1986,36(2):302-313.
    [36]Kojima H,Watanabe M,Fukui M.Sulfurivermis fontis gen.nov.,sp.nov.,a sulfur-oxidizing autotroph,and proposal of Thioprofundaceae fam.nov.International Journal of Systematic and Evolutionary Microbiology,2017,67(9):3458-3461.
    [37]Xu HX,Jiang LJ,Li SN,Zhong TH,Lai QL,Shao ZZ.Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic.Acta Microbiologica Sinica,2016,56(1):88-100.(in Chinese)徐鈜绣,姜丽晶,李少能,钟添华,赖其良,邵宗泽.南大西洋深海热液区可培养硫氧化微生物多样性及其硫氧化特性.微生物学报,2016,56(1):88-100.
    [38]Zeng X,Shao ZZ.Microbial functional groups and molecular mechanisms for biomineralization in hydrothermal vents.Microbiology China,2017,44(4):890-901.(in Chinese)曾湘,邵宗泽.深海热液区微生物矿化过程的功能群和分子机制.微生物学通报,2017,44(4):890-901.
    [39]刘明亮.不同热源类型地热系统的地球化学对比.中国地质大学硕士学位论文,2015.
    [40]Liu ML,Cao YW,Wang MD,Li JX,Guo QH.Source of hydrochemical composition and formation mechanism of Rehai geothermal water in Tengchong.Safety and Environmental Engineering,2014,21(6):1-7.(in Chinese)刘明亮,曹耀武,王敏黛,李洁祥,郭清海.腾冲热海热泉水化学组分来源及其形成机制探讨.安全与环境工程,2014,21(6):1-7.
    [41]Valverde A,Tuffin M,Cowan DA.Biogeography of bacterial communities in hot springs:a focus on the actinobacteria.Extremophiles,2012,16(4):669-679.
    [42]Whitaker RJ,Grogan DW,Taylor JW.Geographic barriers isolate endemic populations of hyperthermophilic archaea.Science,2003,301(5635):976-978.
    [43]Imhoff JF.Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria//Blankenship RE,Madigan MT,Bauer CE.Anoxygenic Photosynthetic Bacteria.Dordrecht:Springer,1995.
    [44]Huang QY,Jiang HC,Zhang CL,Li WJ,Deng SC,Yu BS,Dong HL.Abundance of ammonia-oxidizing microorganisms in response to environmental variables of hot springs in Yunnan Province,China.Acta microbiologica Sinica,2010,50(1):132-136.(in Chinese)黄秋媛,蒋宏忱,张传伦,李文均,邓诗财,于炳松,董海良.云南地区热泉中氨氧化菌丰度对环境条件的响应.微生物学报,2010,50(1):132-136.
    [45]Zhang CL,Ye Q,Huang ZY,Li WJ,Chen JQ,Song ZQ,Zhao WD,Bagell C,Inskeep WP,Ross C,Gao L,Wiegel J,Romanek CS,Shock EL,Hedlund BP.Global occurrence of archaeal amoA genes in terrestrial hot springs.Applied and Environmental Microbiology,2008,74(20):6417-6426.
    [46]Song ZQ,Wang L,Zhou EM,Wang FP,Xiao X,Zhang CL,Li WJ.Abundances of ammonia-oxidizing archaeal accA and amoA genes in response to NO2-and NO3-of hot springs in Yunnan province.Acta Microbiologica Sinica,2014,54(12):1462-1470.(in Chinese)宋兆齐,王莉,周恩民,王风平,肖湘,张传伦,李文均.云南热泉中氨氧化古菌的accA基因与amoA基因丰度与环境因子NO2-和NO3-的相关性.微生物学报,2014,54(12):1462-1470.
    [47]Huang QY,Jiang HC,Briggs BR,Wang S,Hou WG,Li GY,Wu G,Solis R,Arcilla CA,Abrajano T,Dong H.Archaeal and bacterial diversity in acidic to circumneutral hot springs in the Philippines.FEMS Microbiology Ecology,2013,85(3):452-464.
    [48]Robertson WJ,Kinnunen HM,Plumb JJ,Franzmann PD,Puhakka JA,Gibson JAE,Nichols PD.Moderately thermophilic iron oxidising bacteria isolated from a pyritic coal deposit showing spontaneous combustion.Minerals Engineering,15(11),815-822.
    [49]De Boer MK,Koolmees EM,Vrieling EG,Breeman AM,Van Rijssel M.Temperature responses of three Fibrocapsa japonica strains(Raphidophyceae)from different climate regions.Journal of Plankton Research,2005,27(1):47-60.
    [50]Bogdanova TI,Tsaplina I,Kondrat’eva TF,Duda VI,Suzina NE,Melamud VS,Tourova TP,Karavaiko GI.Sulfobacillus thermotolerans sp.nov.,a thermotolerant,chemolithotrophic bacterium.International Journal of Systematic and Evolutionary Microbiology,2006,56(5):1039-1042.
    [51]Lin YT,Jia ZJ,Wang DM,Chiu CY.Effects of temperature on the composition and diversity of bacterial communities in bamboo soils at different elevations.Biogeosciences,2017,14(21):4879-4889.
    [52]王尚.滇藏热泉微生物群落分布及其控制因素研究.中国地质大学(北京)博士学位论文,2015.
    [53]Dick RP,Deng S.Multivariate factor analysis of sulfur oxidation and rhodanese activity in soils.Biogeochemistry,1991,12(2):87-101.
    [54]Wang HX,Jiang LY,Wu XW,Chen JM.Isolation,identification and degradation characteristics of a sulfide-oxidizing bacterium.Applied and Environmental Biology,2011,17(5):706-710.(in Chinese)王惠祥,姜理英,吴晓薇,陈建孟.硫氧化细菌的分离鉴定及降解特性.应用与环境生物学报,2011,17(5):706-710.
    [55]Lagadic-Gossmann D,Huc L,Lecureur V.Alterations of intracellular pH homeostasis in apoptosis:origins and roles.Cell Death and Differentiation,2004,11(9):953-961.
    [56]Suzuki I,Lee D,Mackay B,Harahuc L,Oh JK.Effect of various ions,pH,and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans.Applied and Environmental Microbiology,1999,65(11):5163-5168.
    [57]Chen RJ,Yue ZL,Eccleston ME,Williams S,Slater NK.Modulation of cell membrane disruption by pH-responsive pseudo-peptides through grafting with hydrophilic side chains.Journal of the Controlled Release,2005,108(1):63-72.
    [58]Zhang J,Fan WP,Fang P,Xia CC.Effect of substrates on bio-oxidation catalyzed by T.ferrooxidans.Journal of Nanjing University of Chemical Technology,2001,23(6):37-41.(in Chinese)张俊,范伟平,方苹,夏场场.底物对亚铁硫杆菌生物氧化过程的影响.南京工业大学学报,2001,23(6):37-41.
    [59]Zhang S,Yan L,Chen ZB.Geographical distribution of sulfur-oxidizing bacteria.Journal of Heilongjiang Bayi Agricultural University,2017,29(2):68-73.(in Chinese)张爽,晏磊,陈志宝.硫氧化菌的地域分布特征.黑龙江八一农垦大学学报,2017,29(2):68-73.
    [60]Song ZQ,Wang L,Liu XH,Liang F.The diversities of Proteobacteria in four acidic hot springs in Yunnan.Journal of Henan Agricultural University,2016,50(3):376-382.(in Chinese)宋兆齐,王莉,刘秀花,梁峰.云南4处酸性热泉中的变形菌门细菌多样性.河南农业大学学报,2016,50(3):376-382.
    [61]Lu LL,Li ZX,Cui CY.Study on the variation of dissolved oxygen in the Plateau river.Environmental Science and Technology,2018,41(7):133-140.(in Chinese)吕琳莉,李朝霞,崔崇雨.高原河流溶解氧变化规律研究.环境科学与技术,2018,41(7):133-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700