覆冰翼型气动性能和噪声特征的数值研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation on Aerodynamic Performance and Noise of Iced Airfoils
  • 作者:叶学民 ; 张然 ; 韩章敬 ; 李春曦
  • 英文作者:YE Xuemin;ZHANG Ran;HAN Zhangjing;LI Chunxi;Key Lab of Condition Monitoring and Control for Power Plant Equipment, North China Electric Power University;
  • 关键词:覆冰翼型 ; 气动性能 ; 气动噪声 ; 大涡模拟 ; 失速
  • 英文关键词:iced airfoil;;aerodynamic performance;;aerodynamic noise;;LES;;stall
  • 中文刊名:DONG
  • 英文刊名:Journal of Chinese Society of Power Engineering
  • 机构:华北电力大学电站设备状态监测与控制教育部重点实验室;
  • 出版日期:2019-03-15
  • 出版单位:动力工程学报
  • 年:2019
  • 期:v.39;No.291
  • 基金:河北省自然科学基金资助项目(E2016502098);; 中央高校基本科研业务费专项基金资助项目(13MS98)
  • 语种:中文;
  • 页:DONG201903013
  • 页数:9
  • CN:03
  • ISSN:31-2041/TK
  • 分类号:85-93
摘要
利用Fluent软件预测了风力机翼型在覆冰状态下的气动性能和气动噪声,采用大涡模拟与基于Lighthill声类比的FW-H模型相结合的方法模拟了不同覆冰状态下的声压级频谱和功率谱密度分布特征,分析了攻角和来流风速对声压级频谱和功率谱密度分布特征的影响。结果表明:覆冰使翼型的气动性能下降,升力减小,气流与壁面提前分离并进入失速区;明冰对翼型气动性能的影响最显著,霜冰次之;翼型覆冰后气动噪声明显增大,尤其覆明冰时翼型的气动噪声更突出;翼型覆冰前后气动噪声均随攻角增大而提高,未达到和超过失速攻角时气动噪声分别呈低频离散特性和宽频特性;来流风速对气动噪声的影响体现在总声压级上,各监测点的总声压级均随来流风速的增大而增强。
        The aerodynamic and aeroacoustic features of airfoils covered by glaze ice and rime ice were numerically studied using Fluent, while the sound pressure level spectrum and power spectral density of the airfoil were simulated under different iced profiles with incompressible Large Eddy Simulation(LES) method combined with Ffowcs Williams and Hawkings(FW-H) model based on Lighthill acoustic analogy, so as to analyze the effects of attack angle and wind speed on the sound pressure level spectrum and power spectral density. Results show that the aerodynamic performance of iced airfoils is deteriorated by the feature of declined lift, and an earlier separation of air flow from the airfoil is observed to enter the stall region. The effect of glaze ice on the aerodynamic performance is the most significant, followed by rime ice. The noise coming from the airfoil covered by glaze ice and rime ice is significantly higher than that without icing, especially in the former case. The acoustic noise is augmented with the increase of attack angle, and is manifested with the low-frequency discrete and broadband features when the attack angle is smaller or greater than the stall angle. The effect of wind speed on aerodynamic noise is reflected in the total sound pressure level, which increases with rising wind speed at each monitor point.
引文
[1] 中国可再生能源风能专业委员会. 2016年中国风电装机容量统计[R]. 北京: 中国风能协会, 2016.
    [2] SHIN J, BOND T H. Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel[C]//30th Aerospace Sciences Meeting and Exhibit. Reno, USA: AIAA, 1992.
    [3] FORTIN G, ILINCA A, LAFORTE J L, et al. Prediction of 2D airfoil ice accretion by bisection method and by rivulets and beads modeling[C]//41st Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: AIAA, 2003.
    [4] SUNDéN B, WU Zan. On icing and icing mitigation of wind turbine blades in cold climate[J]. Journal of Energy Resources Technology, 2015, 137(5): 051203.
    [5] FU Ping, FARZANEH M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(4/5): 181-188.
    [6] 易贤, 朱国林, 王开春, 等. 翼型积冰的数值模拟[J]. 空气动力学学报, 2002, 20(4): 428-433. YI Xian, ZHU Guolin, WANG Kaichun, et al. Numerically simulating of ice accretion on airfoil[J]. Acta Aerodynamica Sinica, 2002, 20(4): 428-433.
    [7] 李岩, 迟媛, 冯放, 等. 垂直轴风力机叶片表面结冰的风洞试验[J]. 工程热物理学报, 2012, 33(11): 1872-1875. LI Yan, CHI Yuan, FENG Fang, et al. Wind tunnel test on icing on blade used for vertical axis wind turbine[J]. Journal of Engineering Thermophysics, 2012, 33(11): 1872-1875.
    [8] KALDELLIS J K, APOSTOLOU D, KAPSALI M, et al. Environmental and social footprint of offshore wind energy. Comparison with onshore counterpart[J]. Renewable Energy, 2016, 92: 543-556.
    [9] KUVLESKY W P, Jr, BRENNAN L A, MORRISON M L, et al. Wind energy development and wildlife conservation: challenges and opportunities[J]. Journal of Wildlife Management, 2007, 71(8): 2487-2498.
    [10] LUBBERS D F. Research program concerning the social and environmental aspects related to the windfarm project of SEP[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 27(1/2/3): 439-453.
    [11] SAIDUR R, RAHIM N A, ISLAM M R, et al. Environmental impact of wind energy[J]. Renewable and Sustainable Energy Reviews, 2011, 15(5): 2423-2430.
    [12] LYSAK P D, CAPONE D E, JONSON M L. Measurement of the unsteady lift of thick airfoils in incompressible turbulent flow[J]. Journal of Fluids and Structures, 2016, 66: 315-330.
    [13] OERLEMANS S, SIJTSMA P, LóPEZ B M. Location and quantification of noise sources on a wind turbine[J]. Journal of Sound and Vibration, 2007, 299(4/5): 869-883.
    [14] 张永超, 王维斌, 贝广霞, 等. 对旋风机气动噪声声强及压力脉动分布规律的数值预测[J]. 噪声与振动控制, 2010, 30(1): 127-131. ZHANG Yongchao, WANG Weibin, BEI Guangxia, et al. Numerical prediction of sound intensity and pressure fluctuation of aerodynamic noise of a counter-rotating axial flow fan[J]. Noise and Vibration Control, 2010, 30(1): 127-131.
    [15] GHASEMIAN M, NEJAT A. Aerodynamic noise prediction of a horizontal axis wind turbine using improved delayed detached eddy simulation and acoustic analogy[J]. Energy Conversion and Management, 2015, 99: 210-220.
    [16] GHASEMIAN M, NEJAT A. Aero-acoustics prediction of a vertical axis wind turbine using large eddy simulation and acoustic analogy[J]. Energy, 2015, 88: 711-717.
    [17] SZASZ R Z, RONNFORS M, REVSTEDT J. Influence of ice accretion on the noise generated by an airfoil section[J]. International Journal of Heat and Fluid Flow, 2016, 62: 83-92.
    [18] HOMOLA M C, VIRK M S, WALLENIUS T, et al. Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 724-729.
    [19] 叶学民, 张建坤, 李春曦. 叶顶形状对轴流风机气动噪声影响的数值研究[J]. 动力工程学报, 2017, 37(7): 558-568. YE Xuemin, ZHANG Jiankun, LI Chunxi. Aerodynamic acoustic characteristics of an axial flow fan with different blade tips[J]. Journal of Chinese Society of Power Engineering, 2017, 37(7): 558-568.
    [20] 付建, 王永生, 靳栓宝, 等. LES和DES在流体动力噪声预报中的适用性分析[J]. 华中科技大学学报(自然科学版), 2015, 43(2): 66-70. FU Jian, WANG Yongsheng, JIN Shuanbao, et al. Applicability of LES and DES in fluid dynamic noise prediction[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(2): 66-70.
    [21] 叶学民, 丁学亮, 李春曦. 单动叶安装角异常时轴流风机压力脉动特性的数值分析[J]. 动力工程学报, 2016, 36(5): 395-403. YE Xuemin, DING Xueliang, LI Chunxi. Numerical analysis on pressure fluctuation of an axial flow fan with abnormal installation angles of a single blade[J]. Journal of Chinese Society of Power Engineering, 2016, 36(5): 395-403.
    [22] HODOR V, BIRLE D, NASCUTIU L, et al. Aeroacoustics-noise prediction by using "LES" for signal processing[J]. Energy Procedia, 2017, 112: 322-329.
    [23] de PANDO M F, SCHMID P J, SIPP D. A global analysis of tonal noise in flows around aerofoils[J]. Journal of Fluid Mechanics, 2014, 754: 5-38.
    [24] 孔满昭, 蒲宏斌. 翼型结冰过程数值模拟验算与分析[J]. 航空工程进展, 2011, 2(3): 267-272. KONG Manzhao, PU Hongbin. Numerical simulation check and analysis of ice accretion on airfoil[J]. Advances in Aeronautical Science and Engineering, 2011, 2(3): 267-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700