含地域和起源因子的马尾松立木生物量与材积方程系统
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Individual Tree Biomass and Volume Equation System with Region and Origin in Variables for Pinus massoniana in China
  • 作者:曾伟生 ; 贺东北 ; 蒲莹 ; 肖前辉
  • 英文作者:Zeng Weisheng;He Dongbei;Pu Ying;Xiao Qianhui;Academy of Forest Inventory and Planning,National Forestry and Grassland Administration;Central South Forest Inventory and Planning Institute,National Forestry and Grassland Administration;
  • 关键词:地上生物量 ; 地下生物量 ; 哑变量 ; 误差变量 ; 联立方程组
  • 英文关键词:aboveground biomass;;belowground biomass;;dummy variable;;error-in-variable;;simultaneous equations
  • 中文刊名:LYKE
  • 英文刊名:Scientia Silvae Sinicae
  • 机构:国家林业和草原局调查规划设计院;国家林业和草原局中南林业调查规划设计院;
  • 出版日期:2019-02-15
  • 出版单位:林业科学
  • 年:2019
  • 期:v.55
  • 基金:国家自然科学基金项目(31570628)
  • 语种:中文;
  • 页:LYKE201902008
  • 页数:12
  • CN:02
  • ISSN:11-1908/S
  • 分类号:78-89
摘要
【目的】建立含地域和起源因子的相容性立木生物量与材积方程系统,为准确估计森林生物量提供依据。【方法】以我国南方主要针叶树种马尾松为研究对象,基于301和104株样木的实测地上生物量、树干材积和地下生物量数据,综合利用哑变量建模方法和误差变量联立方程组方法,建立集地上生物量、树干材积和地下生物量为一体、确保与生物量转换因子和根茎比等变量相容的一元和二元方程系统,并分析立木生物量和材积估计是否受地域和起源的影响。【结果】所建立的马尾松一元和二元相容性立木生物量方程与材积方程,确定系数(R~2)均在0.92以上,其中地上生物量方程的平均预估误差在4%以内,地下生物量方程的平均预估误差在8%以内。对马尾松地上生物量和树干材积的估计,二元模型均显著优于一元模型,其F统计量远大于临界值;但对地下生物量的估计,二元模型反而不如一元模型效果好。不论是一元模型还是二元模型,地域和起源对马尾松地上生物量估计均无显著影响,地上生物量模型具有很好的通用性,同时也进一步印证了曾伟生等(2012)提出的通用性地上生物量模型M=0.3ρD~(7/3)的广泛适用性。对马尾松地下生物量的估计,不同地域的模型存在显著差异;相同直径的林木,总体1地域范围内(长江流域东南部)的地下生物量要大于总体2(长江流域中西部)。对马尾松树干材积的估计,二元模型不受地域和起源影响,但一元模型受起源影响;相同直径的林木,人工林的材积估计值大于天然林。【结论】将哑变量引入误差变量联立方程组,可同时解决多个变量之间的相容性及地上生物量和地下生物量样本单元数不相等时如何联合建模的问题,是切实可行的生物量建模方法;研究所建立的马尾松立木生物量方程、材积方程及其相容的生物量转换因子和根茎比方程,达到相关技术规定预估精度要求,可推广应用。
        【Objective】 Climate change has increased the need of information on amount of forest biomass. The purpose of this study is to develop compatible individual tree biomass and volume equations, providing a quantitative basis on accurate estimation of forest biomass.【Method】 Based on the mensuration data of above-and belowground biomass from 301 and 104 destructive sample trees of Masson pine(Pinus massoniana)in southern China, respectively, one-and two-variable systems, which combined aboveground biomass and stem volume equations with belowground biomass equation, and ensured them compatible with biomass conversion factor and root-to-shoot ratio equations, were developed using dummy variable modeling approach and error-in-variable simultaneous equations approach, and effects of region and origin on estimation of biomass and volume were analyzed.【Result】 The coefficients of determination(R~2)of one-and two-variable compatible individual tree biomass and volume equations for Masson pine developed in this study were more than 0.92, whereas the mean prediction errors(MPEs) of above-and belowground biomass equations were less than 4% and 8%, respectively. For estimation of aboveground biomass and stem volume of Masson pine, two-variable equations were significantly better than one-variable equations, for the F-statistics between one-and two-variable aboveground biomass and stem volume equations were greatly larger than the critical F value. But for estimation of belowground biomass, one-variable were even better than two-variable ones. Effects of region and origin on estimation of both one-and two-variable aboveground biomass equations were not significant, indicating that aboveground biomass equations of Masson pine were generalized on national level. Furthermore, the general allometric biomass model M=0.3ρD~(7/3 )presented by Zeng et al.(2012)was proved to be applicable in practice. For estimation of belowground biomass of Masson pine, models in different regions were significantly different. For trees with the same diameter, estimate of belowground biomass in the region of modeling population 1(south-eastern part of Yangtze River basin) was larger than that in the region of modeling population 2(central-western part of Yangtze River basin). For estimation of stem volume of Masson pine, two-variable model was not affected by region and origin, whereas one-variable model was affected by origin. For trees with the same diameter, estimate of stem volume in a planted stand was larger than that in a natural stand.【Conclusion】 Integrating dummy variable into error-in-variable simultaneous equations is a practical approach, which not only can ensure the compatibility among several target variables, but also can develop simultaneously a system even though numbers of above-and belowground biomass observations are very different. The biomass equations, volume equations, and compatible biomass conversion factor equations and root-to-shoot ratio equations developed for Masson pine in this study meet the need of precision requirements to relevant regulation, and can be used in application.
引文
董利虎,李凤日,贾炜炜,等. 2011. 含度量误差的黑龙江省主要树种生物量相容性模型. 应用生态学报, 22(10): 2653-2661.(Dong L H, Li F R, Jia W W, et al. 2011. Compatible biomass models for main tree species with measurement error in Heilongjiang Province of northeast China. Chinese Journal of Applied Ecology, 22(10): 2653-2661.[in Chinese])
    董利虎,李凤日,贾炜炜. 2013. 东北林区天然白桦相容性生物量模型. 林业科学, 49(7): 75-85.(Dong L H, Li F R, Jia W W. 2013. Compatible tree biomass models for natural white birch (Betula platyphylla) in northeast China forest area. Scientia Silvae Sinicae, 49(7): 75-85.[in Chinese])
    国家林业局. 1999. 立木材积表(LY/T 1353—1999). 北京: 中国标准出版社.(State Forestry Administration. 1999. Tree volume tables(LY/T 1353—1999). Beijing: China Standard Press. [in Chinese])
    国家林业局. 2014. 中国森林资源报告(2009—2013). 北京: 中国林业出版社.(State Forestry Administration. 2014. Report of Forest Resources in China (2009—2013). Beijing: China Forestry Publishing House. [in Chinese])
    国家林业局. 2015a. 立木生物量建模样本采集技术规程(LY/T 2259—2014). 北京: 中国标准出版社.(State Forestry Administration. 2015a. Technical regulation on sample collections for tree biomass modeling(LY/T 2259—2014). Beijing: China Standard Press. [in Chinese])
    国家林业局. 2015b. 立木生物量建模方法技术规程(LY/T 2258—2014). 北京: 中国标准出版社.(State Forestry Administration. 2015b. Technical regulation on methodology for tree biomass modeling(LY/T 2258—2014). Beijing: China Standard Press. [in Chinese])
    国家林业局. 2015c. 立木生物量模型及碳计量参数—马尾松(LY/T 2263—2014). 北京: 中国标准出版社.(State Forestry Administration. 2015c. Tree biomass models and related parameters to carbon accounting for Pinus massoniana(LY/T 2263—2014). Beijing: China Standard Press. [in Chinese])
    贺东北,骆期邦,曾伟生. 1998. 立木生物量线性联立模型研究. 浙江林学院学报, 15(3): 298-303.(He D B, Luo Q B, Zeng W S. 1998. Study on linear simultaneous model of tree biomass. Journal of Zhejiang Forestry College, 15(3):298-303. [in Chinese])
    李海奎,雷渊才. 2010. 中国森林植被生物量和碳储量评估. 北京:中国林业出版社.(Li H K, Lei Y C. 2010. Estimation and evaluation of forest biomass and carbon storage in China. Beijing: China Forestry Publishing House. [in Chinese])
    李晖,曾伟生. 2016. 不同区域落叶松二元立木材积表的检验及差异分析. 林业科学, 52(6): 157-162.(Li H, Zeng W S. 2016. Validation and comparison of two-variable tree volume tables for Larix spp. in different regions of China. Scientia Silvae Sinicae, 52(6):157-162. [in Chinese])
    李际平,郭文清,曹小玉. 2013. 基于非线性度量误差的马尾松相容性立木生物量模型. 中南林业科技大学学报, 33(6):22-25.(Li J P, Guo W Q, Cao X Y. 2013. Compatible nonlinear tree biomass models with measurement error for Masson pine (Pinus massoniana). Journal of Central South University of Forestry & Technology, 33(6):22-25. [in Chinese])
    吕勇,曾思齐,邓湘文,等. 1996. 马尾松林分生物量的研究. 中南林学院学报, 16(4): 28-32.(Lü Y, Zeng S Q, Deng X W, et al. 1996. A study of stand biomass of Pinus massoniana. Journal of Central South Forestry University, 16(4): 28-32. [in Chinese])
    唐守正,郎奎建,李海奎. 2008. 统计和生物数学模型计算(ForStat教程). 北京: 科学出版社.(Tang S Z, Lang K J, Li H K. 2008. Statistics and computation of biomathematical models (course of ForStat). Beijing: China Science Press. [in Chinese])
    吴守蓉,杨惠强,洪蓉,等. 1999. 马尾松林生物量及其结构的研究. 福建林业科技, 26(1): 18-21.(Wu S R, Yang H Q, Hong R, et al. 1999. Studies on the biomass of Pinus massoniana plantations and its structure. Journal of Fujian Forestry Sci & Tech, 26(1):18-21. [in Chinese])
    曾鸣,聂祥永,曾伟生. 2013. 中国杉木相容性立木材积和地上生物量方程. 林业科学, 49(10):74-79.(Zeng M, Nie X Y, Zeng W S. 2013. Compatible tree volume and aboveground biomass equations of Chinese fir in China. Scientia Silvae Sinicae, 49(10): 74-79. [in Chinese])
    曾伟生. 2010. 二元立木材积方程的检验与更新方法探讨. 中南林业调查规划, 29(3): 1-5.(Zeng W S. 2010. Discussion on verification and updating of two-way tree volume equations. Central South Forest Inventory and Planning, 29(3): 1-5. [in Chinese])
    曾伟生,唐守正. 2011a. 非线性模型对数回归的偏差校正及与加权回归的对比分析. 林业科学研究, 24(2): 137-143.(Zeng W S, Tang S Z. 2011a. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models. Forest Research, 24(2): 137-143. [in Chinese])
    曾伟生,唐守正. 2011b. 东北落叶松和南方马尾松地下生物量模型研建.北京林业大学学报, 33(2):1-6.(Zeng W S, Tang S Z. 2011b. Establishment of below-ground biomass equations for larch in northeastern and Masson pine in southern China. Journal of Beijing Forestry University, 33(2): 1-6. [in Chinese])
    曾伟生,唐守正. 2011c. 立木生物量模型的优度评价和精度分析. 林业科学, 47(11): 106-113.(Zeng W S, Tang S Z. 2011c. Goodness evaluation and precision analysis of tree biomass equations. Scientia Silvae Sinicae, 47(11): 106-113. [in Chinese])
    曾伟生,唐守正. 2012. 一个新的通用性相对生长生物量模型. 林业科学, 48(1):48-52.(Zeng W S, Tang S Z. 2012. A new general biomass allometric model. Scientia Silvae Sinicae, 48(1):48-52. [in Chinese])
    曾伟生,肖前辉,胡觉,等. 2010. 中国南方马尾松立木生物量模型研建.中南林业科技大学学报, 30(5): 50-56.(Zeng W S, Xiao Q H, Hu J, et al. 2010. Establishment of single-tree biomass equations for Pinus massoniana in southern China. Journal of Central South University of Forestry & Technology, 30(5): 50-56. [in Chinese])
    曾伟生,姚顺彬,肖前辉. 2015. 中国湿地松立木生物量方程研建. 中南林业科技大学学报, 35(1): 8-13.(Zeng W S, Yao S B, Xiao Q H. 2015. Construction of individual tree biomass equations for Pinus elliottii in China. Journal of Central South University of Forestry & Technology, 35(1): 8-13. [in Chinese])
    中华人民共和国林业部. 1990. 林业专业调查主要技术规定. 北京: 中国林业出版社.(Forestry Ministry of P. R. China. 1990. Major regulations on special surveys in forestry. Beijing: Chinese Forestry Publishing House.[in Chinese])
    Borders B E. 1989. Systems of equations in forest stand modeling. Forest Science, 35(2):548-556.
    Clark J, Murphy G. 2011. Estimating forest biomass components with hemispherical photography for Douglas-fir stands in northwest Oregon. Canadian Journal of Forest Research, 41(5): 1060-1074.
    Crecente-Campo F, Soares P, Tomé M, et al. 2010. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. Forest Ecology and Management, 260(11): 1965-1974.
    Dixon R K, Solomon A M, Brown S, et al. 1994. Carbon pools and flux of global forest ecosystems. Science, 263(5144): 185-190.
    Djomo A N, Picard N, Fayolle A, et al. 2016. Tree allometry for estimation of carbon stocks in African tropical forests. Forestry:An International Journal of Forest Research, 89(4):446-455.
    Dong L H, Zhang L J, Li F R. 2014. A compatible system of biomass equations for three conifer species in northeast, China. Forest Ecology and Management, 329: 306-317.
    Dong L H, Zhang L J, Li F R. 2016. Developing two additive biomass equations for three coniferous plantation species in northeast China. Forests, 7(7): 136. doi:10.3390/f7070136.
    Fayolle A, Doucet J L, Gillet J F, et al. 2013. Tree allometry in central Africa: testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 305: 29-37.
    Fu L Y, Zeng W S, Zhang H R, et al. 2014. Generic linear mixed-effects individual-tree biomass models for Pinus massoniana Lamb. in southern China. Southern Forests:A Journal of Forest Science, 76(1):47-56.
    Henry M, Bombelli A, Trotta C, et al. 2013. GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. iForest (early view): e1-e5. [2013-07-18]. http://www.sisef.it/ iforest/contents/?id=ifor0901-006.
    IPCC. 2006. IPCC guidelines for national greenhouse gas inventories-agriculture, forestry and other land use. Volume 4. Hayama: IGES.
    Jenkins J C, Chojnacky D C, Heath L S, et al. 2003. National-scale biomass estimators for United States tree species. Forest Science, 49(1): 12-35.
    Kozak A, Kozak R. 2003. Does cross validation provide additional information in the evaluation of regression models? Canadian Journal of Forest Research, 33(6): 976-987.
    Meng S X, Huang S, Lieffers V J, et al. 2008. Wind speed and crown class influence the height-diameter relationship of lodgepole pine: nonlinear mixed effects modeling. Forest Ecology and Management, 256(4): 570-577.
    Mugasha W A, Eid T, Bollandsas O M, et al. 2013. Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. Forest Ecology and Management, 310: 87-101.
    Muukkonen P. 2007. Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126(2): 157-166.
    Návar J. 2009. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico. Forest Ecology and Management, 257(2): 427-434.
    Parresol B R. 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45(4): 573-593.
    Parresol B R. 2001. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, 31(5): 865-878.
    Picard R R, Cook R D. 1984. Cross-validation of regression models. Journal of American Statistical Association, 79(387): 575-583.
    Snorrason A, Einarsson S F. 2006. Single-tree biomass and stem volume functions for eleven tree species used in Icelandic forestry. Icelandic Agricultural Sciences, 19: 15-24.
    Somogyi Z, Cienciala E, M?kip?? R, et al. 2007. Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126(2): 197-207.
    Tang S Z, Li Y, Wang Y H. 2001. Simultaneous equations, error-in-variable models, and model integration in systems ecology. Ecological Modelling, 142(3): 285-294.
    Ter-Mikaelian M T, Korzukhin M D. 1997. Biomass equations for sixty-five north American tree species. Forest Ecology and Management, 97(1): 1-24.
    Vallet P, Dh?te J F, Le Moguédec G, et al. 2006. Development of total aboveground volume equations for seven important forest tree species in France. Forest Ecology and Management, 229(1/3): 98-110.
    Wang X P, Fang J Y, Zhu B A. 2008. Forest biomass and root-shoot allocation in northeast China. Forest Ecology and Management, 255(12): 4007-4020.
    West G B, Brown J H, Enquist B J. 1997. A general model for the origin of allometric scaling laws in biology. Science, 276(5309): 122-126.
    West G B, Brown J H, Enquist B J. 1999. A general model for the structure and allometry of plant vascular systems. Nature, 400: 664-667.
    Zeng W S. 2014. Development of monitoring and assessment of forest biomass and carbon storage in China. Forest Ecosystems, 1:20. doi:10.1186/s40663-014-0020-5.
    Zeng W S. 2015. Integrated individual tree biomass simultaneous equations for two larch species in northeastern and northern China. Scandinavian Journal of Forest Research, 30(7): 594-604.
    Zeng W S, Tang S Z. 2012. Modeling compatible single-tree aboveground biomass equations of Masson pine(Pinus massoniana) in southern China. Journal of Forestry Research, 23(4): 593-598.
    Zeng W S, Zhang H R, Tang S Z. 2011. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales—a case study for Masson pine(Pinus massoniana) in southern China. Canadian Journal of Forest Research, 41(2): 1547-1554.
    Zeng W S, Zhang L J, Chen X Y, et al. 2017. Construction of compatible and additive individual-tree biomass models for Pinus tabulaeformis in China. Canadian Journal of Forest Research, 47(4): 467-475.
    Zianis D, Mencuccini M. 2004. On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187(2/3): 311-332.
    Zianis D, Muukkonen P, M?kip?? R, et al. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4,63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700