白令海夏季水文结构年际变化特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:HYDROGRAPHIC STRUCTURE AND INTER-ANNUAL VARIATIONS OF BERING SEA IN SUMMER
  • 作者:左菲 ; 李丙瑞 ; 吴成祥 ; Jia ; Wang ; 李院生
  • 英文作者:Zuo Fei;Li Bingrui;Wu Chengxiang;Jia Wang;Li Yuansheng;Shanghai Ocean University;Polar Research Institute of China;International Arctic Research Center, University of Alaska Fairbanks;
  • 关键词:白令海 ; 水团 ; 温度 ; 盐度 ; 净热通量 ; 风应力旋度 ; 海平面气压
  • 英文关键词:Bering Sea;;water mass;;temperature;;salinity;;net heat flux;;wind stress curl;;sea level pressure
  • 中文刊名:JDYZ
  • 英文刊名:Chinese Journal of Polar Research
  • 机构:上海海洋大学;中国极地研究中心;International Arctic Research Center,University of Alaska Fairbanks;
  • 出版日期:2017-03-15
  • 出版单位:极地研究
  • 年:2017
  • 期:v.29
  • 基金:国家自然科学基金面上项目(41376190);; 海洋公益性行业科研专项(201205007);; 南北极环境综合考察与评估专项(CHINARE2015-03-01);; 工信部项目(工信部联装[2013]412)资助
  • 语种:中文;
  • 页:JDYZ201701012
  • 页数:13
  • CN:01
  • ISSN:31-1744/P
  • 分类号:115-127
摘要
基于2008、2010、2012和2014年我国北极科学考察期间在白令海获取的水文观测数据,结合历史共享资料,通过对白令海水团、上层海洋热含量、净热通量变化、风场及海平面气压分布情况等的分析,探讨了白令海水文结构的年际变化特征及其原因。研究发现,白令海夏季的水团包括白令海上层水团(BUW)、中层水团(BIW)、深层水团(BDW)和白令海陆架水团(BSW)。白令海温盐分布差异最大、年际变化最剧烈的情况主要集中在上层水团。对比4年水团分布情况,最明显的变化是2012年7月调查区上层海水温度偏低,2014年7月上层海水温度偏高。这种异常变化在热含量方面表现为:2012年7月调查区各个测站上的热含量异常低,而2014年7月测站上的热含量都高于平均水平。着重研究了2014年7月海温偏高的原因,认为是由于陆架和海盆区分别有两种不同的形成机制造成:陆架区累积净热通量偏高,海水吸收热量升温;海盆区在异常强大而持久的海面气压(SLP)高压系统下,海面负的风应力旋度得到加强,从而引起持续的暖平流输送及强烈的Ekman抽吸作用,最终导致了上层海水偏暖。
        Based on conductivity–temperature–depth(CTD) data obtained by the Chinese National Arctic Research Expeditions(2008, 2010, 2012, and 2014), in combination with shared historical data, the water mass, upper-ocean heat content, net heat flux change, wind field, and sea level pressure were analyzed to investigate the interannual variability of the hydrologic structural characteristics of the Bering Sea. It was found that the waters of the Bering Sea could be divided into four masses: Bering Upper Water(BUW), Bering Middle Water(BIW), Bering Deep Water(BDW), and Bering Shelf Water(BSW). Variations of temperature and salinity were concentrated mainly in the upper water. In July 2012, the sea surface temperature(SST) was below normal, whereas in July 2014, strong positive SST anomalies developed. These abnormal phenomena resulted because of lower or higher heat content. We investigated the reasons for the SST anomaly in July 2014 and found that the mechanism was completely different from basin to shelf. The higher SST of shelf waters was mainly caused by higher cumulative net heat flux, whereas in the basin, it was due to unusually strong and persistent high pressure. This meant that the sea surface wind stress curl was enhanced, which caused continuous warm advection, and strong Ekman pumping, function that led to warming of the upper water.
引文
1 Takahashi K.The Okhotsk and Bering Sea:critical marginal seas for the land-ocean linkage[C]//Land-Sea Link in Asia,Proceedings of an International Workshop on Sediment Transport and Storage in Coastal Sea-Open System.Tsukuba:STA(JISTEC),Geological Survey of Japan,1999:15-19.
    2汤毓祥,矫玉田,邹娥梅.白令海和楚科奇海水文特征和水团结构的初步分析[J].极地研究,2001,13(1):57-68.
    3高郭平,侍茂崇,赵进平,等.1999年白令海夏季水文特征分析[J].海洋学报,2002,24(1):8-16.
    4王晓宇,赵进平.北白令海夏季冷水团的分布及其年际变化研究[J].海洋学报,2011,33(2):1-10.
    5 Stabeno P J,Schumacher J D,Ohtani K.The physical oceanography of the Bering Sea[M]//Loughlin T R,Ohtani K.Dynamics of the Bering Sea.Fairbanks:Alaska Sea Grant College Program,1999:1-28.
    6 Arsen’ev V S.The Currents and Water Masses of the Bering Sea[M].Moscow:Izdatel’stvo“Nauka”,1967:135.
    7高郭平,董兆乾,赵进平,等.1999年夏季白令海陆坡区海流动力分析[J].极地研究,2003,15(2):91-101.
    8 Bond N A,Overland J E,Turet P.Spatial and temporal characteristics of the wind forcing of the Bering Sea[J].Journal of Climate,1994,7(7):1119-1130.
    9 Isoguchi O,Kawamura H,Kono T.A study on wind-driven circulation in the subarctic North Pacific using TOPEX/POSEIDON altimeter data[J].Journal of Geophysical Research:Oceans(1978-2012),1997,102(C6):12457-12468.
    10 Lagerloef G S E.Interdecadal variations in the Alaska Gyre[J].Journal of Physical Oceanography,1995,25(10):2242-2258.
    11 Pickart R S,Macdonald A M,Moore G W K,et al.Seasonal evolution of Aleutian low pressure systems:implications for the North Pacific subpolar circulation[J].Journal of Physical Oceanography,2009,39(6):1317-1339.
    12 Danielson S L,Weingartner T J,Hedstrom K S,et al.Coupled wind-forced controls of the Bering-Chukchi shelf circulation and the Bering Strait throughflow:Ekman transport,continental shelf waves,and variations of the Pacific-Arctic sea surface height gradient[J].Progress in Oceanography,2014,125:40-61.
    13万彪,兰健,孙双文.白令海海盆上层环流年际特征及初步机制研究[J].中国海洋大学学报,2009,39(S1):7-12,170.
    14 Reed R K,Stabeno P J.Surface heat fluxes and subsurface heat content at a site over the southeastern Bering Sea shelf,May-July1996[J].Deep Sea Research Part II:Topical Studies in Oceanography,2002,49(26):5911-5917.
    15 Bond N A,Cronin M F,Freeland H,et al.Causes and impacts of the 2014 warm anomaly in the NE Pacific[J].Geophysical Research Letters,2015,42(9):3414-3420.
    16钟文理,赵进平.北极加拿大海盆2003年和2008年上层海洋热含量的差异分析[J].极地研究,2012,24(1):24-34.
    17 Reed R K.On estimation of net long-wave radiation from the oceans[J].Journal of Geophysical Research,1976,81(33):5793-5794.
    18 Reed R K.On estimating insolation over the ocean[J].Journal of Physical Oceanography,1977,7(3):482-485.
    19 Budyko M I.Gidrometeorologicheskeo,Leningrad[M].Stepanova N A,Trans.Washington D C:U.S.Weather Bureau,1958.
    20洪星园,傅云飞,冼桃,等.热带海表风速与海表温度日变化关系分析[J].气候与环境研究,2014,19(4):437-451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700