A Sliding Mode Approach to Enhance the Power Quality of Wind Turbines Under Unbalanced Voltage Conditions
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Sliding Mode Approach to Enhance the Power Quality of Wind Turbines Under Unbalanced Voltage Conditions
  • 作者:Mohammad ; Javad ; Morshed ; Afef ; Fekih
  • 英文作者:Mohammad Javad Morshed;Afef Fekih;IEEE;the Department of Electrical and Computer Engineering, University of Louisiana at Lafayette;
  • 英文关键词:Doubly fed induction generators(DFIG);;fuzzy approach;;integral terminal sliding mode control(ITSMC);;observer;;power quality;;voltage unbalances;;wind turbines
  • 中文刊名:ZDHB
  • 英文刊名:自动化学报(英文版)
  • 机构:IEEE;the Department of Electrical and Computer Engineering, University of Louisiana at Lafayette;
  • 出版日期:2019-03-15
  • 出版单位:IEEE/CAA Journal of Automatica Sinica
  • 年:2019
  • 期:v.6
  • 语种:英文;
  • 页:ZDHB201902020
  • 页数:9
  • CN:02
  • ISSN:10-1193/TP
  • 分类号:233-241
摘要
An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.
        An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC.
引文
[1]T.Ackermann and P.E.Morthorst,“Economic aspects of wind power in power systems,”Wind Power in Power Systems,pp.383,2005.
    [2]M.Tsili and S.Papathanassiou,“A review of grid code technical requirements for wind farms,”IET Renewable Power Generation,vol.3,no.3,pp.308-332,Sep.2009.
    [3]“IEEE std.519-2014:IEEE draft recommended practices and requirements for harmonic control in electric power systems,”IEEEP519/D6ba,September 2013 pp.1-26,Nov 2013.
    [4]J.Yao,H.Li,Z.Chen,X.Xia,X.Chen,Q.Li,and Y.Liao,“Enhanced control of a DFIG-based wind-power generation system with series grid-side converter under unbalanced grid voltage conditions,”IEEETransactions on Power Electronics,vol.28,no.7,pp.3167-3181,July2013.
    [5]S.Seman,J.Niiranen,and A.Arkkio,“Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance,”IEEE Transactions on Power Systems,vol.21,no.4,pp.1782-1789,Nov.2006.
    [6]S.Zhang,K.Tseng,S.S.Choi,T.D.Nguyen,and D.L.Yao,“Advanced control of series voltage compensation to enhance wind turbine ride through,”EEE Transactions on Power Electronics,vol.27,no.2,pp.763-772,Feb 2012.
    [7]S.W.Mohod and M.V.Aware,“A STATCOM-control scheme for grid connected wind energy system for power quality improvement,”IEEESystems Journal,vol.4,no.3,pp.346-352,Sep.2010.
    [8]M.Edrah,K.L.Lo,and O.Anaya-Lara,“Impacts of high penetration of DFIG wind turbines on rotor angle stability of power systems,”IEEETransactions on Sustainable Energy,vol.6,no.3,pp.759-766,July2015.
    [9]C.Wessels,F.Gebhardt,and F.W.Fuchs,“Fault ride-through of a DFIGwind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults,”IEEE Transactions on Power Electronics,vol.26,no.3,pp.807-815,March 2011.
    [10]Y.Zhou,P.Bauer,J.A.Ferreira,and J.Pierik,“Operation of gridconnected DFIG under unbalanced grid voltage condition,”IEEE Transactions on Energy Conversion,vol.24,no.1,pp.240-246,March 2009.
    [11]B.Bandyopadhyay,S.Janardhanan,and S.K.Spurgeon,“Advances in sliding mode control,”Lecture Notes in Control and Information Sciences,vol.440,2013.
    [12]N.Derbel,J.Ghommam,and Q.Zhu,Applications of Sliding Mode Control.Springer 2017,vol.79.
    [13]M.T.Hamayun,C.Edwards,H.Alwi et al.,Fault Tolerant Control Schemes Using Integral Sliding Modes,Springer 2016.
    [14]B.Beltran,T.Ahmed-Ali,and M.E.H.Benbouzid,“High-order sliding mode control of variable-speed wind turbines,”IEEE Transactions on Industrial electronics,vol.56,no.9,pp.3314-3321,2009.
    [15]S.E.B.Elghali,M.E.H.Benbouzid,T.Ahmed-Ali,and J.F.Charpentier,“High-order sliding mode control of a marine current turbine driven doubly-fed induction generator,”IEEE Journal of Oceanic Engineering,vol.35,no.2,pp.402-411,2010.
    [16]L.Xiong,J.Wang,X.Mi,and M.W Khan,“Fractional order sliding mode based direct power control of grid-connected DFIG,”IEEETransactions on Power Systems,vol.33,no.3,pp.3087-3096,2018.
    [17]N.Ullah,M.A.Ali,A.Ibeas,and J.Herrera,“Adaptive fractional order terminal sliding mode control of a doubly fed induction generator-based wind energy system,”IEEE Access,vol.5,pp.21368-21381,2017.
    [18]H.Amimeur,D.Aouzellag,R.Abdessemed,and K.Ghedamsi,“Sliding mode control of a dual-stator induction generator for wind energy conversion systems,”International Journal of Electrical Power&Energy Systems,vol.42,no.1,pp.60-70,2012.
    [19]R.Aghatehrani and R.Kavasseri,“Sensitivity-analysis-based sliding mode control for voltage regulation in microgrids,”IEEE Trans.Sustain.Energy,vol.4,no.1,pp.50-57,2013.
    [20]B.Chen,Y,Feng,and M.Zhou,“Terminal sliding-mode control scheme for grid-side PWM converter of DFIG-based wind power system,”in Proc.39th Annual Conference of the IEEE Industrial Electronics Society,2013,pp.8014-8018.
    [21]C.-S.Chiu,“Derivative and integral terminal sliding mode control for a class of MIMO nonlinear systems,”Automatica,vol.48,no.2,pp.316-326,2012.
    [22]M.J.Morshed and A.Fekih,“Integral terminal sliding mode control to provide fault ride-through capability to a grid connected wind turbine driven DFIG,”in Proc.IEEE International Conference on Industrial Technology,2015,pp.1059-1064.
    [23]M.J.Morshed and A.Fekih,“A comparison study between two sliding mode based controls for voltage sag mitigation in grid connected wind turbines,”in Proc.IEEE Conference on Control Applications,2015,pp.1913-1918.
    [24]A.Abdou,A.Abu-Siada,and H.Pota,“Impact of vsc faults on dynamic performance and low voltage ride through of DFIG,”International Journal of Electrical Power&Energy Systems,vol.65,pp.334-347,2015.
    [25]W.-H.Chen,J.Yang,L.Guo,and S.Li,“Disturbance-observer-based control and related methodsan overview,”IEEE Transactions on Industrial Electronics,vol.63,no.2,pp.1083-1095,2016.
    [26]L.Qiao and W.Zhang,“Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles,”IET Control Theory&Applications,vol.11,no.8,pp.1293-1306,2017.
    [27]F.-J.Lin,Y.-C.Hung,and K.-C.Ruan,“An intelligent second-order sliding-mode control for an electric power steering system using a wavelet fuzzy neural network,”IEEE Trans.Fuzzy Systems,vol.22,no.6,pp.1598-1611,2014.
    [28]V.I.Utkin and A.S.Poznyak,“Adaptive sliding mode control with application to super-twist algorithm:Equivalent control method,”Automatica,vol.49,no.1,pp.39-47,2013.
    [29]Y.Wang,L.Gu,Y.Xu,and X.Cao,“Practical tracking control of robot manipulators with continuous fractional-order nonsingular terminal sliding mode,”IEEE Transactions on Industrial Electronics,vol.63,no.10,pp.6194-6204,2016.
    [30]Z.Galias and X.Yu,“Dynamical behaviors of discretized second-order terminal sliding-mode control systems,”IEEE Transactions on Circuits and Systems II:Express Briefs,vol.59,no.9,pp.597-601,2012.
    [31]M.J.Morshed and A.Fekih,“A fault-tolerant control paradigm for microgrid-connected wind energy systems,”IEEE Systems Journal,vol.12,no.1,pp.360-372,2018.
    [32]S.Nasiri and H.Seifi,“Robust probabilistic optimal voltage sag monitoring in presence of uncertainties,”ET Generation,Transmission&Distribution,vol.10,no.16,pp.4240-4248,2016.
    [33]A.D.Hansen and G.Michalke,“Fault ride-through capability of DFIGwind turbines,”Renewable energy,vol.32,no.9,pp.1594-1610,2007.
    [34]P.-H.Huang,M.S.El Moursi,and S.A.Hasen,“Novel fault ridethrough scheme and control strategy for doubly fed induction generatorbased wind turbine,”IEEE Transactions on Energy Conversion,vol.30,no.2,pp.635-645,2015.
    [35]E.Bounadja,A.Djahbar,and Z.Boudjema,“Variable structure control of a doubly fed induction generator for wind energy conversion systems,”Energy Procedia,vol.50,pp.999-1007,2014.
    [36]Z.Zhang,H.Zhang,Z.Wang,and Q.Shan,“Non-fragile exponential h-infinity control for a class of nonlinear networked control systems with short time-varying delay via output feedback controller,”IEEEtransactions on cybernetics,vol.47,no.8,pp.2008-2019,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700