Double-shell structure of Al_3(Zr,Sc) precipitate induced by thermomechanical treatment of Al-Zr-Sc alloy cable
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Double-shell structure of Al_3(Zr,Sc) precipitate induced by thermomechanical treatment of Al-Zr-Sc alloy cable
  • 作者:Jiayi ; Zhang ; Tao ; Hu ; Danqing ; Yi ; Hongxuan ; Wang ; Bin ; Wang
  • 英文作者:Jiayi Zhang;Tao Hu;Danqing Yi;Hongxuan Wang;Bin Wang;School of Material Science and Engineering,Central South University;Light Alloy Research Institute,Central South University;School of Mechanical Engineering,South China University of Technology;
  • 英文关键词:Aluminum alloys;;Double-shell structure;;Thermomechanical processing;;Electrical properties;;Rare earths
  • 中文刊名:YXTB
  • 英文刊名:稀土学报(英文版)
  • 机构:School of Material Science and Engineering,Central South University;Light Alloy Research Institute,Central South University;School of Mechanical Engineering,South China University of Technology;
  • 出版日期:2019-05-20
  • 出版单位:Journal of Rare Earths
  • 年:2019
  • 期:v.37
  • 基金:Project supported by the 2011 Program of the Ministry of Education in China(043010100)
  • 语种:英文;
  • 页:YXTB201906017
  • 页数:5
  • CN:06
  • ISSN:11-2788/TF
  • 分类号:112-116
摘要
A spheroidal Al_3(Zr,Sc) precipitate with a double-shell structure, comprising a Sc-enriched core enveloped by a Zr-enriched inner shell and a Sc-enriched outer shell(~9 nm in thickness), appears in an Al-0.2 Zr-0.1 Sc alloy cable after thermomechanical treatment. The average diameter of the spheroidal Al_3(Zr,Sc) precipitate is approximately 80 nm. The double-shelled Al_3(Zr,Sc) precipitate presents three different interfaces and is semi-coherent with the Al matrix. Atom probe tomography(APT) analyses further show that the outer shell of Al_3(Zr,Sc) precipitate is Sc element enrichment. The electrical conductivity of Al-0.2 Zr-0.1 Sc alloy cable increases by 6.5 MS/m within the aging time from 0.2 to 100 h at 350 ℃, with double-shelled Al_3(Zr,Sc)precipitate.
        A spheroidal Al_3(Zr,Sc) precipitate with a double-shell structure, comprising a Sc-enriched core enveloped by a Zr-enriched inner shell and a Sc-enriched outer shell(~9 nm in thickness), appears in an Al-0.2 Zr-0.1 Sc alloy cable after thermomechanical treatment. The average diameter of the spheroidal Al_3(Zr,Sc) precipitate is approximately 80 nm. The double-shelled Al_3(Zr,Sc) precipitate presents three different interfaces and is semi-coherent with the Al matrix. Atom probe tomography(APT) analyses further show that the outer shell of Al_3(Zr,Sc) precipitate is Sc element enrichment. The electrical conductivity of Al-0.2 Zr-0.1 Sc alloy cable increases by 6.5 MS/m within the aging time from 0.2 to 100 h at 350 ℃, with double-shelled Al_3(Zr,Sc)precipitate.
引文
1. Cadirli E, Tecer H, Sahin M, Yilmaz E, Kirindi T, Gunduz M. Effect of heat treatments on the microhardness and tensile strength of Al-0.25 wt.%Zr alloy.J Alloys Compd. 2015;632:229.
    2. Chao RZ, Guan XH, Guan RG, Tie D, Lian C, Wang X. Effect of Zr and Sc on mechanical properties and electrical conductivities of Al wires. Trans Nonferrous Met Soc China. 2014;24:3164.
    3. BelovNA, Alabin AN, Matveeva IA, Eskin DG. Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot rolled Al sheets. Trans Nonferrous Met Soc China. 2015;25:2817.
    4. Royset J, Ryum N. Some comments on the misfit and coherency loss of Al_3Sc particles in Al-Sc alloys. Scr Mater. 2005;52:1275.
    5. Fuller CB, Murray JL, Seidman DN. Temporal evolution of the nanostructure of Al(Sc,Zr)alloys:part I—chemical compositions of Al_3(Sc_(1-x)Zr_x)precipitates.Acta Mater. 2005;53:5401.
    6. Tolley A, Radmilovic V, Dahmen U. Segregation in Al_3(Sc,Zr)precipitates in Al-Sc-Zr alloys. Scr Mater. 2005;52:621.
    7. Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN. Precipitation evolution in Al-0.1Sc, Al-O.1Zr and Al-0.1Sc-0.1Zr(at.%)alloys during isochronal aging. Acta Mater. 2010;58:5184.
    8. Guan RG, Shen YF, Zhao ZY, Wang X. A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosizedprecipitates. J Mater Sci Technol. 2017;33:215.
    9. Zhang JY, Ma MY, Shen FH, Yi DQ, Wang B. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of AlMg-Si alloy cables. Mater Sci Eng A. 2018;710:27.
    10. Murashkin MY, Sabirov I, Medvedev AE, Enikeev NA, Lefebvre W, Valiev RZ.Mechanical and electrical properties of an ultrafine grained Al-8.5 wt.%RE(RE=5.4 wt.%Ce, 3.1 wt.%La)alloy processed by severe plastic deformation. Mater Des. 2016;90:433.
    11. Valiev RZ, Murashkin MY, Sabirov I. A nanostructural design to produce highstrength A1 alloys with enhanced electrical conductivity. Scr Mater. 2014;76:13.
    12. Apps PJ, Berta M, Prangnell PB. The effect of dispersoids on the grain refinement mechanisms during deformation of aluminium alloys to ultra-high strains. Acta Mater. 2005;53:499.
    13. Su N, Guan RG, Wang X, Wang YX, Jiang WS, et al. Grain refinement in an Al-Er alloy during accumulative continuous extrusion forming. J Alloys Compd.2016;680:283.
    14. Clouet E, Lae L, Epicier T, Lefebvre W, Nastar M, Deschamps A. Complex precipitation pathways in multi-component alloys. Nat Mater. 2006;5:482.
    15. Buranova Y, Kulitskiy V, Peterlechner M, Mogucheva A, Kaibyshev R,Divinski SV, et al. Al_3(Sc,Zr)-based precipitates in AlMg alloy:effect of severe deformation. Acta Mater. 2017;124:210.
    16. Knipling KE, Seidman DN, Dunand DC. Ambient-and high-temperature mechanical properties of isochronally aged Al-0.06Sc, Al-0.06Zr and Al-0.06Sc-0.06Zr(at%)alloys. Acta Mater. 2011;59:943.
    17. Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc,Zr)alloys at ambient and elevated temperatures. Acta Mater. 2003;51:4803.
    18. Booth-Morrison C, Dunand DC, Seidman DN. Coarsening resistance at 400℃of precipitation-strengthened Al-Zr-Sc-Er alloys. Acta Mater. 2011;59:7029.
    19. He ZB, Yin ZM, Lin S, Deng Y, Shang BC, Zhou XJ. Preparation, micro structure and properties of Al-Zn-Mg-Sc alloy tubes. J Rare Earths. 2010;28:641.
    20. Fuller CB, Seidman DN. Temporal evolution of the nanostructure of Al(Sc,Zr)alloys:Part II-coarsening of Al_3(Sc_(1-x)Zr_x)precipitates. Acta Mater. 2005;53:5415.
    21. Knipling KE, Dunand DC, Seidman DN. Criteria for development of castable,creep resistant aluminum based alloys. Z Metallkd. 2006;97:246.
    22. Laughlin DE, Hono K. Physical Metallurgy. 5th ed. Amsterdam:Elsevier Ltd.;2014.
    23. Song H, Hoyt JJ. A molecular dynamics study of heterogeneous nucleation at grain boundaries during solid-state phase transformations. Comp Mater Sci.2016;117:151.
    24. Bojarski SA, Harmer MP, Rohrer GS. Influence of grain boundary energy on the nucleation of complexion transitions. Scr Mater. 2014;88:1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700