基因组编辑技术在作物育种中的应用及监管现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application and Regulatory Status of Genome Editing Technology in Crop Breeding
  • 作者:秦瑞英 ; 殷三 ; 李娟 ; 李浩 ; 杨亚春 ; 杨剑波 ; 魏鹏程
  • 英文作者:Qin Ruiying;Yin San;Li Juan;Li Hao;Yang Yachun;Yang Jianbo;Wei Pengcheng;Key Laboratory of Gene Editing, Rice Research Institute, Anhui Academy of Agricultural Sciences;Anhui Vocational College of Press and Publishing;
  • 关键词:基因编辑 ; 基因修饰作物 ; 作物育种 ; 监管 ; 检测
  • 英文关键词:genome editing techniques;;genetically modified plant;;crop breeding;;regulatory;;detection
  • 中文刊名:ZNTB
  • 英文刊名:Chinese Agricultural Science Bulletin
  • 机构:安徽省农业科学院水稻研究所基因编辑重点实验室;安徽省新闻出版职业技术学院;
  • 出版日期:2019-02-25
  • 出版单位:中国农学通报
  • 年:2019
  • 期:v.35;No.513
  • 基金:农业部转基因重大专项“环境胁迫应答调控元件的分离和鉴定”(2016ZX08010002-008);; 安徽省重点研发计划“水稻理想株型与杂种优势利用的分子育种技术研究和新品种选育”(1804a07020111)
  • 语种:中文;
  • 页:ZNTB201906015
  • 页数:5
  • CN:06
  • ISSN:11-1984/S
  • 分类号:102-106
摘要
随着基因组编辑技术的迅猛发展,CRISPR/Cas9系统已经成为农作物改良的最主要手段之一。为给中国未来可能出现的,商业化应用的基因编辑作物的监管工作提供参考,本文简要归纳了目前运用CRISPR/Cas9技术培育农作物的现状,总结了基因编辑技术在作物改良中的典型成功事例,分析了各国政府对于基因编辑作物的监管态度,并指出中国科学家应在此次革命中迎头赶上。
        With the rapicd development of genome editing technology, CRISPR/Cas9 system has become one of the most irmportant means of crop improvement. In order to provide a reference for the supervision of genetically editing crops which may appear and could be commercially applied in China in the future, this paper briefly reviews current situation of crop cultivation by CRISPR/Cas9 technology, surummarizes typical successful examples of gene editing technology in crop improvement, analyzes the regulatory attitudes of governments in various countries on genetically editing crops, and point outs that Chinese scientists should catch up with this revolution.
引文
[1]Tilman D,Balzer C,Hill J,et al.Global food demand and the sustainable intensification of agriculture[J].Proc.Natl.Acad.Sci.USA,2011,108:20260-20264.
    [2]Ray D K,Mueller N D,West P C,et al.Yield trends are insufficient to double global crop production by 2050[J].PloS One,2013,8:e66428.
    [3]Puchta H,Fauser F.Gene targeting in plants:25 years later[J].Int.J.Dev.Biol.,2013,57:629-637.
    [4]Songstad D D,Petolino J F,Voytas D F,et al.Genome editing of plants[J].CRC Crit.Rev.Plant Sci,2017,36:1-23.
    [5]Puchta H.The repair of double-strand breaks in plants:Mechanisms and consequences for genome evolution[J].J.Exp.Bot,2005,56:1-14.
    [6]Lloyd A,Plaisier C L,Carroll D,et al.Targeted mutagenesis using zincfinger nucleases in Arabidopsis[J].Proc.Natl.Acad.Sci.USA,2005,102:2232-2237.
    [7]Cermak T,Doyle E L,Christian M,et al.Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J].Nucleic Acids Res,2011,39:e82.
    [8]Mahfouz M M,Li L,Shamimuzzaman M,et al.De novo-engineered transcription activator-like effector TALE hybrid nuclease with novel DNA binding specificity creates double-strand breaks[J].Proc.Natl.Acad.Sci.USA,2011,108:2623-2628.
    [9]Li J F,Norville J E,Aach J,et al.Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9[J].Nat.Biotechnol,2013,31:688.
    [10]Nekrasov V,Staskawicz B,Weigel D,et al.Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J].Nat.Biotechnol,2013,31:691-693.
    [11]Shan Q,Wang Y,Li J,et al.Targeted genome modification of crop plants using a CRISPR-Cas system[J].Nat.Biotechnol,2013a,31:686-688.
    [12]Zetsche B,Gootenberg J S,Abudayyeh O O,et al.Cpf1 is a single RNA-guided endonuclease of a Class 2 CRISPR/Cas system[J].Cell,2015,163:759-771.
    [13]Endo A,Masafumi M,Kaya H,et al.Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida[J].Sci.Rep,2016a,6:38169.
    [14]Hui Zhang,Jinshan Zhang,Zhaobo Lang,et al.Genome Editing-Principles and Applications for Functional Genomics Research and Crop Improvement[J].Critical Reviews in Plant Sciences,2017,36:4,291-309.
    [15]Mali P,Aach J,Stranges P B,et al.CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J].Nature Biotechnology,2013,31(9):833.
    [16]Kim D,Kim J,Hur J K,et al.Erratum:Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.[J].Nature Biotechnology,2016,34(8):863.
    [17]Gao L,Cox D,Yan W X,et al.Engineered Cpf1 variants with altered PAM specificities increase genome targeting range[J].Nature Biotechnology,2017,35(8):789-792.
    [18]Xu R,Yang Y,Qin R,et al.Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J].Genet.Genomics,2016,43:529-532.
    [19]Zhang Y,Liang Z,Zong Y,et al.Efficient and transgenefree genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA[J].Nat.Commun,2016b,7:12617.
    [20]Li T,Liu B,Spalding M H,et al.High-efficiency TALEN-based gene editing produces disease-resistant rice[J].Nat.Biotechnol,2012b,30:390-392.
    [21]Jia H,Zhang Y,Orbovic V,et al.Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker[J].Plant Biotechnol,2017,15:817-823.
    [22]Peng A,Chen S,Lei T,et al.Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus[J].Plant Biotechnol,2017,doi:10.1111/pbi.12733.
    [23]Wang F,Wang C,Liu P,et al.Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J].PloS One,2016a,11:e0154027.
    [24]Wang Y,Cheng X,Shan Q,et al.Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J].Nat.Biotechnol,2014,32:947-951
    [25]Chandrasekaran J,Brumin M,Wolf D,et al.Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology[J].Mol.Plant Pathol,2016,17:1140-1153.
    [26]Baltes N J,Hummel A W,Konecna E,et al.Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system[J].Nature,2015,1:15145.
    [27]Ali Z,Abulfaraj A,Idris A,et al.CRISPR/Cas9-mediated viral interference in plants[J].Genome Biol,2015,16:238.
    [28]Townsend J A,Wright D A,Winfrey R J,et al.High-frequency modification of plant genes using engineered zinc-finger nucleases[J].Nature,2009,459:442-445.
    [29]Svitashev S,Young J K,Schwartz C,et al.Targeted mutagenesis,precise gene editing and site-specific gene insertion in maize using Cas9and guide RNA[J].Plant Physiol,2015,169:931-945.
    [30]Li Z,Liu Z B,Xing A,et al.Cas9-guide RNA directed genome editing in soybean[J].Plant Physiol,2015,169:960-970.
    [31]Li T,Liu B,Chen C Y,et al.TALEN-mediated homologous recombination produces site-directed CRITICAL REVIEWS IN PLANT SCIENC-ES 305 DNA base change and herbicide-resistant rice[J].J.Genet.Genomics,2016c,43:297-305.
    [32]Sauer N J,Narvaez-Vasquez J,Mozoruk J,et al.Oligonucleotide mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants[J].Plant Physiol,2016,170:1917-1928.
    [33]Li J,Meng X,Zong Y,et al.Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J].Nat.Plants,2016a,2:16139.
    [34]Haun W,Coffman A,Clasen B M,et al.Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J].Plant Biotechnol,2014,12:934-940.
    [35]Demorest Z L,Coffman A,Baltes N J,et al.Direct stacking of sequencespecific nuclease-induced mutations to produce high oleic and low linolenic soybean oil[J].BMC Plant Biol,2016,16:225.
    [36]Morineau C,Bellec Y,Tellier F,et al.Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa[J].Plant Biotechnol,2016,15:729-739
    [37]Jiang W Z,Henry I M,Lynagh P G,et al.Significant enhancement of fatty acid composition in seeds of the allohexaploid,Camelina sativa,usingCRISPR/Cas9 gene editing[J].Plant Biotechnol,2017,15:648-657.
    [38]Clasen B M,Stoddard T J,Luo S,et al.Improving cold storage and processing traits in potato through targeted gene knockout[J].Plant Biotechnol,2015,14:169-176.
    [39]Zhou H,He M,Li J,et al.Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRIS-PR/Cas9-mediated TMS5 editing system[J].Sci.Rep,2016,6:37395.
    [40]Chilcoat D,Liu Z.B,Sander J.Use of CRISPR/Cas9 for crop improvement in maize and soybean[J].Prog.Mol.Biol.Transl.Sci,2017,149:27-46.
    [41]Sun Y,Jiao G,Liu Z,et al.Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J].Front Plant Sci,2017,8:298.
    [42]谢科,饶力群,李红伟,等.基因组编辑技术在植物中的研究进展与应用前景[J].中国生物工程杂志,2013,33(6):99-104.
    [43]王福军,赵开军.基因组编辑技术应用于作物遗传改良的进展与挑战[J].中国农业科学,2018,51(1):1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700