ERF3促根突变体缓解高浓度CO_2对粳稻植株氮吸收的负效应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of the Impact of Large Root Mutant ERF3 on Alleviating Negative Effect of Elevated CO_2 on Nitrogen Uptake of Japonica Rice
  • 作者:王伟露 ; 袁嫚嫚 ; 朱建国 ; 刘钢
  • 英文作者:WANG Weilu;YUAN Manman;ZHU Jianguo;LIU Gang;State Key Laboratory of Soil and Sustainable Agriculture/Institute of Soil Science, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:粳稻 ; FACE ; 根系活力 ; 氮浓度 ; 叶片净光合速率
  • 英文关键词:japonica rice;;FACE;;root activity;;nitrogen concentration;;leaf net photosynthesis
  • 中文刊名:TRYJ
  • 英文刊名:Ecology and Environmental Sciences
  • 机构:中国科学院南京土壤研究所/土壤与可持续农业国家重点实验室;中国科学院大学;
  • 出版日期:2018-07-18
  • 出版单位:生态环境学报
  • 年:2018
  • 期:v.27
  • 基金:国家基础性研究项目(2014CB954500);; 国家自然科学基金国际(地区)合作与交流项目(31261140364)
  • 语种:中文;
  • 页:TRYJ201807002
  • 页数:8
  • CN:07
  • ISSN:44-1661/X
  • 分类号:19-26
摘要
大气CO_2浓度升高会显著降低粳稻植株和叶片氮浓度,从而减缓叶片净光合速率和降低产量的响应幅度。植物氮浓度在高CO_2浓度下的降低与植株氮素吸收能力密切相关,而后者受到根系大小及其活力的调控。为探索通过提高粳稻根系生长及其活力来缓解大气CO_2浓度升高对氮吸收负效应的可行性,利用CO_2生长箱和农田开放式空气CO_2浓度增高FACE(free air CO_2 enrichment)研究平台,以促根突变体ERF3及其野生型作为研究对象,评价二者根系形态指标(总根长、冠根数和扎根深度)、根系活力、氮素吸收和利用效率、各器官氮浓度、叶片净光合速率和地上部生物量对CO_2浓度升高(+200μmol?mol-1)的响应。结果表明,(1)促根突变体ERF3和野生型总根长、冠根数、扎根深度及根系生物量在高CO_2浓度下均表现为显著增加(P<0.05)。突变体ERF3根系形态指标和生物量对高CO_2浓度的响应幅度为42.3%~288.9%,较野生型高出6.4%~191.0%。(2)突变体ERF3单茎根系活力在高CO_2浓度下表现为显著(P<0.05)增加,增幅为212.1%;而野生型在高CO_2浓度下无显著变化。(3)无论是生长箱还是田间盆栽试验,突变体ERF3在高浓度CO_2下均可以更好地协调氮素的吸收和利用过程。突变体ERF3各器官的氮浓度在高浓度CO_2下并未表现出明显降低趋势;而野生型在高浓度CO_2下表现为显著降低。(4)叶片氮浓度和Rubisco含量的稳定显著提高(P<0.05)了突变体ERF3叶片的净光合速率对浓度CO_2升高的响应能力,增幅为42.8%。以上结果表明,未来育种可考虑通过提高粳稻根系生长和活力来减缓CO_2浓度升高对粳稻植株氮素吸收的负效应,从而促进水稻生长和生产。
        Increased atmosphere CO_2 concentration significantly reduces nitrogen concentration in organs of japonica rice, which can retard the response level of leaf net photosynthesis rate and grain yield to elevated CO_2. Nitrogen concentration of plant under elevated CO_2 concentration is closely correlated with nitrogen uptake which is regulated by root activity. To estimate the feasibility alleviating the negative effect of elevated CO_2 on nitrogen uptake of japonica rice via enhanced root growth and activity, closed growth chamber and free air carbon-dioxide enrichment(FACE) platform were used to evaluate the effect of elevated CO_2(+200 μmol?mol-1) on root morphological parameters(total root length, adventitious root number and root deep), root activity, nitrogen uptake and utilization efficiency, tissue nitrogen concentration, leaf net photosynthesis rate and shoot biomass of wild type and large root mutant ERF3. The results showed that:(1) Elevated CO_2 significantly(P<0.05) increased total root length, adventitious root number, root deep and root biomass in both wild type and mutant ERF3. The increased percentage of these parameters mentioned above ranged from 42.3% to 288.9% mutant ERF3 and the increased percentage of root parameters of mutant ERF3 was 6.4%~ 191.1% higher than that of wild type.(2) Root activity per stem of mutant ERF3 was significantly(P<0.05) increased by 212.1% under elevated CO_2. However, no obvious change was observed for wild type.(3) Mutant ERF3 could coordinate the relationship between nitrogen uptake and utilization much better than wild type under increased CO_2 concentration. As a result, elevated CO_2 had no significant effect on the organs' nitrogen concentration in mutant ERF3, regardless in growth chamber or pots in field trial, but significantly decreased that of wild type. And(4) the stabilization of leaf nitrogen concentration and rubisco content improved the response ability of leaf net photosynthesis of mutant ERF3 to elevated CO_2 by an increase of 42.8%. Therefore, crop breeding should consider enhancing japonica rice root growth and activity to mitigate the negative effect nitrogen uptake resulted from elevated CO_2, which is important for further increasing japonica rice production and grain yield in the future.
引文
CHEN C P,SAKAI H,TOKIDA T,et al.2014.Do the rich always become richer?Characterizing the leaf physiological response of the high-yielding rice cultivar Takanari to free-air CO2 enrichment[J].Plant and Cell Physiology,55(2):381-391.
    DING C,YOU J,CHEN L,et al.2014.Nitrogen fertilizer increases spikelet number per panicle by enhancing cytokinin synthesis in rice[J].Plant Cell Reports,33(2):363-371.
    DRAKE B G,GONZ`ALEZ-MELER M A,LONG S P.1997.More efficient plants:a consequence of rising atmospheric CO2?[J].Annual Review of Plant Physiology and Plant Molecular Biology,48:609-639.
    EASLON H M,BLOOM A J.2013.The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling[J].Frontiers in Plant Science,4:304.
    FENG Z,RüTTING T,PLEIJEL H,et al.2015.Constraints to nitrogen acquisition of terrestrial plants under elevated CO2[J].Global Change Biology,21(8):3152-3168.
    FINZI A C,NORBY R J,CALFAPIETRA C,et al.2007.Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2[J].Proceedings of the National Academy of Sciences.104(35):14014-14019.
    GIFFORD R M,BARRETT D J,LUTZE J L.2000.The effects of elevated[CO2]on the C:N and C:P mass ratios of plant tissues[J].Plant Soil,224(1):1-14.
    HASEGAWA T,SAKAI H,TOKIDA T,et al.2013.Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment(FACE)sites in Japan[J].Functional Plant Biology,40(2):148-159.
    KIBA T,KRAPP A.2016.Plant Nitrogen Acquisition Under Low Availability:Regulation of Uptake and Root Architecture[J].Plant and Cell Physiology,57(4):707-714.
    KIM H Y,LIEFFERING M,KOBAYASHI K,et al.2003.Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply:a free air CO2 enrichment(FACE)experiment[J].Global Change Biology,9(6):826-837.
    KIMBALL B A.2016.Crop responses to elevated CO2 and interactions with H2O,N,and temperature[J].Current Opinion in Plant Biology,31:36-43.
    KURAKAWA T,UEDA N,MAEKAWA M,et al.2007.Direct control of shoot meristem activity by a cytokinin-activating enzyme[J].Nature,445(7128):652-655.
    LI F S,KANG S Z,ZHANG J H,et al.2003.Effects of atmospheric CO2enrichment,water status and applied nitrogen on water-and nitrogenuse efficiencies of wheat[J].Plant Soil,254(2):279-289.
    OOKAWA T,NARUOKA Y,SAYAMA A,et al.2004.Cytokinin effects on ribulose-1,5-bisphosphate carboxylase/oxygenase and nitrogen partitioning in rice during ripening[J].Crop Science,44(6):2107-2115.
    PANG J,ZHU J G,XIE Z B,et al.2006.A new explanation of the Nconcentration decrease in tissues of rice(Oryza sativa L.)exposed to elevated atmospheric p CO2[J].Environmental and Experimental Botany,57(1-2):98-105.
    PENG S.2011.Crop Improvement for Nitrogen Use Efficiency in Irrigated Lowland Rice[M]//The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops.New Jersey.Wiley-Blackwell:211-225.
    TERASHIMA I,YANAGISAWA S,SAKAKIBARA H.2014.Plant Responses to CO2:Background and Perspectives[J].Plant and Cell Physiology,55(2):237-240.
    XU Z S,CHEN M,LI L C,et al.2008.Functions of the ERF transcription factor family in plants[J].Botany,86(9):969-977.
    YANG C,YANG L,YANG Y,et al.2004.Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils[J].Agricultural Water Management,70(1):67-81.
    YANG L,HUANG J,YANG H,et al.2006.The impact of free-air CO2enrichment(FACE)and N supply on yield formation of rice crops with large panicle[J].Field crops research,98(2):141-150.
    YANG L,WANG Y,KOBAYASHI K,et al.2008.Seasonal changes in the effects of free-air CO2 enrichment(FACE)on growth,morphology and physiology of rice root at three levels of nitrogen fertilization[J].Global Change Biology,14(8):1844-1853.
    YOSHIDA S.1981.Fundamentals of Rice Crop Science[M].International Rice Research Institute,Los Banos,Philippines.
    ZHANG H,XUE Y,WANG Z,et al.2009.Morphological and physiological traits of roots and their relationships with shoot growth in“super”rice[J].Field Crops Research,113(1):31-40.
    ZHANG H,ZHANG J,QUAN R,et al.2013.EAR motif mutation of rice Os ERF3 alters the regulation of ethylene biosynthesis and drought tolerance[J].Planta,237(6):1443-1451.
    ZHAO Y,CHENG S,SONG Y,et al.2015.The Interaction between Rice ERF3 and WOX11 Promotes Crown Root Development by Regulating Gene Expression Involved in Cytokinin Signaling[J].The Plant Cell,27(9):2469-2483.
    ZHU C W,ZHU J G,CAO J,et al.2014.Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated[CO2][J].Journal of Experimental Botany,65(20):6049-6056.
    陈改苹,朱建国,庞静,等.2006.CO2浓度升高对水稻抽穗期根系有关性状及根碳氮比的影响[J].中国水稻科学,20(1):53-57.
    陈云风.2015.不同水稻杂交组合根系活力及其产量相关性[J].江苏农业科学,43(12):93-94.
    戢林,李廷轩,张锡洲,等.2012.氮高效利用基因型水稻根系形态和活力特征[J].中国农业科学,45(23):4770-4781.
    李春华,曾青,沙霖楠,等.2016.大气CO2浓度和温度升高对水稻地上部干物质积累和分配的影响[J].生态环境学报,25(8):1336-1342.
    李合生2000.植物生理生化实验原理与技术[M].北京:高等教育出版社.
    庞静,朱建国,谢祖彬,等.2005.开放式空气二氧化碳浓度增高(FACE)条件下水稻的根系活力和氮同化能力[J].应用生态学报,16(8):1482-1486.
    王余龙,蔡建中,何杰升,等.1992.水稻颖花根活量与籽粒灌浆结实的关系[J].作物学报,18(2):81-89.
    叶宝兴,毛达超,刘学春,2005.超级小麦生育后期根系活力与净光合速率相关性的研究[J].山东农业科学,(4):15-18.
    杨建昌.2011.水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J].中国农业科学,44(1):36-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700