One-pot Multicomponent Synthesis, Spectroscopy, Crystal Structures and Theoretical Calculations of 3-Cyano-4-(4-hydroxy-3-methoxyphenyl)-6-phenyl-2(1H)-pyridinone and 3-Cyano-4-chlorophenyl-6-(4-tolyl)-2(1H)-pyridinone
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-pot Multicomponent Synthesis, Spectroscopy, Crystal Structures and Theoretical Calculations of 3-Cyano-4-(4-hydroxy-3-methoxyphenyl)-6-phenyl-2(1H)-pyridinone and 3-Cyano-4-chlorophenyl-6-(4-tolyl)-2(1H)-pyridinone
  • 作者:MUHAMMAD ; Nadeem ; Arshad ; HASSAN ; M.Faidallah ; ABDULLAH ; M.Asiri ; OSMAN ; I.Osman ; FAISAL ; M.S.Aqlan
  • 英文作者:MUHAMMAD Nadeem Arshad;HASSAN M.Faidallah;ABDULLAH M.Asiri;OSMAN I.Osman;FAISAL M.S.Aqlan;Chemistry Department, Faculty of Science, King Abdulaziz University;Centre of Excellence for Advanced Materials Research (CEAMR),King Abdulaziz University;Department of Chemistry, University of Jeddah;Department of Chemistry, University of IBB;
  • 英文关键词:crystal structures;;NBO;;one-pot multicomponent system;;2-pyridinone;;TD-DFT
  • 中文刊名:JGHX
  • 英文刊名:结构化学(英文版)
  • 机构:Chemistry Department, Faculty of Science, King Abdulaziz University;Centre of Excellence for Advanced Materials Research (CEAMR),King Abdulaziz University;Department of Chemistry, University of Jeddah;Department of Chemistry, University of IBB;
  • 出版日期:2019-03-15
  • 出版单位:Chinese Journal of Structural Chemistry
  • 年:2019
  • 期:v.38;No.293
  • 语种:英文;
  • 页:JGHX201903016
  • 页数:16
  • CN:03
  • ISSN:35-1112/TQ
  • 分类号:123-138
摘要
Pyridinone derivatives are of great interest in medicinal chemistry where they were found to be potent to various diseases. Their metal complexes added more value to their applications. Here, we have synthesized two 2-pyridinone derivatives(3-cyano-4-(4-hydroxy-3-methoxyphenyl)-6-phenyl-2(1 H)-pyridinone and 3-cyano-4-chlorophenyl-6-(4-tolyl)-2(1 H)-pyridinone) using one-pot multicomponent system. They were well characterized using spectroscopic techniques like nuclear magnetic resonance(NMR-1 H & 13 C), Fourier transform infrared(FT-IR) and UV/Vis spectroscopy. The final structures were determined using single-crystal X-ray diffraction technique which helps us to determine their geometries. Density functional theory(DFT) and time-dependent density functional theory(TD-DFT) with suitable basis-sets of calculations have correctly simulated these spectroscopic parameters. The intramolecular charge transfer(ICT) of both substrates has been discussed using natural bond orbital(NBO) technique. Molecular electrostatic potential(MEP) surfaces showed their reactive locations for intermolecular charge transfer. Compared to p-nitroaniline(pNA), both substrates were shown to have substantial molecular hyperpolarizability.
        Pyridinone derivatives are of great interest in medicinal chemistry where they were found to be potent to various diseases. Their metal complexes added more value to their applications. Here, we have synthesized two 2-pyridinone derivatives(3-cyano-4-(4-hydroxy-3-methoxyphenyl)-6-phenyl-2(1 H)-pyridinone and 3-cyano-4-chlorophenyl-6-(4-tolyl)-2(1 H)-pyridinone) using one-pot multicomponent system. They were well characterized using spectroscopic techniques like nuclear magnetic resonance(NMR-1 H & 13 C), Fourier transform infrared(FT-IR) and UV/Vis spectroscopy. The final structures were determined using single-crystal X-ray diffraction technique which helps us to determine their geometries. Density functional theory(DFT) and time-dependent density functional theory(TD-DFT) with suitable basis-sets of calculations have correctly simulated these spectroscopic parameters. The intramolecular charge transfer(ICT) of both substrates has been discussed using natural bond orbital(NBO) technique. Molecular electrostatic potential(MEP) surfaces showed their reactive locations for intermolecular charge transfer. Compared to p-nitroaniline(pNA), both substrates were shown to have substantial molecular hyperpolarizability.
引文
(1)Yu,N.;Behrooz,G.;Belaj,F.Rapid microwave-assisted solution phase synthesis of substituted2-pyridone libraries.Tetrahedron 2004,60,8633-8644.
    (2)Scott,M.S.;Albert,P.New synthetic route to 2-pyridones and its application toward the synthesis of(±)-ipalbidine.J.Org.Chem.1997,62,438-439.
    (3)Fassihi,A.;Abedi,D.;Saghaie,L.;Sabet,R.;Fazeli,H.;Bostaki,G.;Deilami,O.;Sadinpou,H.E.Synthesis,antimicrobial evaluation and QSARstudy of some 3-hydroxypyridine-4-one and 3-hydroxypyran-4-one derivatives.J.Med.Chem.2009,44,2145-2157.
    (4)Manna,F.;Chimenti,F.;Bolasco,A.;Filippelli,A.;Lampa,E.Antiinflammatory,analgesic and antipyretic n-acetylΔ22-pyrazolines and dihydrothienocoumarines.Pharmacol.Res.1992,26,267-277.
    (5)Teshima,Y.;Shin-ya,K.;Shimazu,A.;Furihata,K.;Chul,H.S.;Furihata,K.;Hayakawa,Y.;Nagi,K.;Seto,H.Isolation and structural elucidation of pyridoxatin,a free radical scavenger of microbial origin.J.Antibiot.1991,144,685-687.
    (6)Rice-Evans,C.A.;Burdon,R.H.Free Radical Damage and Its Control.Elsevier:Amsterdam 1994,p113-130.
    (7)Dolle,V.;Fan,E.;Nguyen,C.H.;Aubertin,A.M.;Kirn,A.;Andreola,M.L.;Jamieson,G.;Tarrago-Litvak,I.;Bisagni,E.A.A new series of pyridinone derivatives as potent non-nucleoside human immunodeficiency virus type 1 specific reverse transcriptase inhibitors.J.Med.Chem.1995,38,4679-4686.
    (8)Exley,C.;Korchazhkina,O.Aluminium and Alzheimer’s Disease.The Science that Describes the Link.New York:Elsevier 2001,p421-433.
    (9)Scott,D.A.;Coombs,G.H.;Sanderson,B.E.Effects of methotrexate and other antifolates on the growth and dihydrofolate reductase activity of leishmania promastigotes.Biochem Pharmacol 1987,36,2043-2045.
    (10)Imanishi,T.;Shin,H.;Yagi,N.;Hanaoka,M.1,6-Dihydro-3(2H)-pyridinones as synthetic intermediates.Formal synthesis of(±)-tabersonine and(±)-catharanthine.Tetra.Lett.1980,21,3285-3288.
    (11)Chisté,R.C.;Ribeiro,D.;Freitas,M.;Leite,A.;Moniz,T.;Rangel,M.;Fernandes,E.Uncovering novel 3-hydroxy-4-pyridinone metal ion complexes with potential anti-inflammatory properties.J.Inorg.Biochem.2016,155,9-16.
    (12)Corbett,J.W.;Kresge,K.J.;Pan,S.;Cordova,B.C.;Klabe,R.M.;Rodgers,J.D.;Erickson-Viitanen,S.K.Trifluoromethyl-containing3-alkoxymethyl and 3-aryloxymethyl-2-pyridones are potent inhibitors of HIV-1 non-nnucleoside reverse transcriptase.Bioorg.Med.Chem.Lett.2001,1,309-312.
    (13)Telpoukhovskaia,M.A.;Cawthray,J.F.;Rodríguez-Rodríguez,C.;Scott,L.E.;Page,B.D.;Patrink,B.O.;Orvig,C.3-Hydroxy-4-pyridinone derivatives designed for fluorescence studies to determine interaction with amyloid protein as well as cell permeability.Bioorg.Med.Chem.Lett.2015,25,3654-3657.
    (14)Decker,H.Ueber einige ammoniumverbindungen.Chem.Ber.1892,25,443-452.
    (15)Jones,W.D.;Schnettler,R.A.;Huber,E.W.A convenient synthesis of 5-acyl-6-substituted 3-cyano-2(1H)-pyridinones.J.Heterocycl.Chem.1990,27,511-518.
    (16)Abadi,A.H.;Ibrahim,T.M.;Abouzid,K.M.;Lehmann,J.;Tinsley,H.N.;Gary,B.D.;Piazza,G.A.Design,synthesis and biological evaluation of novel pyridine derivatives as anticancer agents and phosphodiesterase 3 inhibitors.Bioorg.Med.Chem.2009,17,5974-5982.
    (17)Balogh,M.;Hermecz,I.;Nàbor-Szabo,G.;Simon,K.;Mészàros,Z.Studies on naphthyridines.An unexpected product in Hantzsch pyridine synthesis.J.Chem.Soc.Perkin.Trans.I 1986,753-757.
    (18)Balogh,M.;Hermecz,I.;Simon,K.;Pusztay,L.Synthesis of 4-substituted and 6-substituted 1,6-naphthyridin-5(6H)-ones.J.Hetero.Chem.1989,26,1755-1769.
    (19)Kleinschron,J.;Mannhaedt,K.;Hartensten,J.;Satzinger,G.Synthese neuer 1,6-naphthyridine durch aminomethin-ylierung von1,4-dihydropyridinen.Synthesis 1986,859-860.
    (20)Sing,B.A novel synthesis of 1,6-dihydro-2-methyl-6-oxo[3,4’-bipyridine]-5-carbonitrile(Milrinone).Hetrocycles.1985,23,1479-1482.
    (21)Zacharias,G.;Wolfbeis,O.S.:Junek,H.über Anilinomethylenverbindungen der cyclohexandione.Monatch.Chem.1974,105,1283-1291.
    (22)Fossa,P,;Boggia,R.;,Lo,P.E.;,Mosti,L.;Dorigo,P.;Floreani,M.Inotropic agents.Synthesis and structure-activity relationships of new milrinone related cAMP PDE III inhibitors.Farmaco 1997,52,523-530.
    (23)Faidallah,H.M.;Rostom,S.A.F.Synthesis,in vitro antitumor evaluation and DNA-binding study of novel tetrahydroquinolines and some derived tricyclic and tetracyclic ring systems.Eur.J.Med.Chem.2013,63,133-143.
    (24)Rong.L.;Han,H.;Jiang,H.;Shi,D.,Tu,S.One‐pot synthesis 4,6‐diaryl‐2‐oxo‐1,2‐dihydropyridine‐3‐carbonitriles via three‐component cyclocondensation under solvent‐free conditions.Synthetic Comm.2008,38,217-224.
    (25)Seifi,M.;Mahboobeh K.R.,Sheibani,H.,Highly efficient method for synthesis of n-amino-2-pyridone derivatives in the presence of catalysts such as magnesium oxide(MgO)and bismuth(III)nitrate pentahydrate(Bi(NO3)3·5H2O).Mod.Res.Catal.2013,2,8-12.
    (26)De Paolis,O.;Baffoe,J.;Landge,S.M.;T?r?k,B.Multicomponent domino cyclization-oxidative aromatization on a bifunctional Pd/C/K-10catalyst:an environmentally benign approach toward the synthesis of pyridines.Synthesis 2008,3423-3428.
    (27)Al-Mutairi,T.M.;Al-Hazimi,H.M.;El-Baih,F.E.M.One-pot multicomponent synthesis of some 5,6-dihydro-benzo[h]quinoline derivatives.J.Saudi Chem.Soc.2009,13,199-207.
    (28)Tu,S.;Jia,R,;Zhang,J.;Zhang,Y.;Jiang,B.A facile one‐pot synthesis of 2‐amino‐4‐arylbenzo[h]quinoline‐3‐carbonitrile derivatives without catalyst.J.Heterocycl.Chem.2007,44,735-738.
    (29)Faidallah,H.M.;Rostom,A.F.S.;Khan,K.A.Synthesis of some polysubstituted nicotinonitriles and derived pyrido[2,3-d]pyrimidines as in vitro cytotoxic and antimicrobial candidates.J.Chem.2016,V 2016,Article ID 2135893,12 pages.https://doi.org/10.1155/2016/2135893.
    (30)Faidallah,H.M.;Rostom,A.F.S.;Badr M.H.;Ismail,A.E.;Almohammadi,A.M.Synthesis of some 1,4,6‐trisubstituted‐2‐oxo‐1,2‐dihydropyridine‐3‐carbonitriles and their biological evaluation as cytotoxic and antimicrobial agents.Arch.Pharm.Chem.Life Sci.,2015,348,824-834.
    (31)Wazzan,N.A.;Al-Qurash,O.S.;Faidallah,H.M.DFT/and TD-DFT/PCM calculations of molecular structure,spectroscopic characterization,NLO and NBO analysis of 4-(4-chlorophenyl)and 4-[4-(dimethylamino)phenyl]-2-oxo-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes.J.Mol.Liq.2016,223,29-47.
    (32)Ramón,D.J.;Miguel,Y.Asymmetric multicomponent reactions(AMCRs):the new frontier.Angew.Chem.,Int.Ed.2005,44,1602.
    (33)Agilent.CrysAlis PRO.Agilent Technologies,Yarnton,England 2012.
    (34)Sheldrick,G.M.A short history of SHELXL,Acta Cryst.2008,A64,112-122.
    (35)Farrugia,L.J.WinGX suite for small-molecule single-crystal crystallography.J.Appl.Cryst.1999,32,837-838.
    (36)Spek,A.L.PLATON-A multipurpose crystallographic tool.Utrecht University,Utrecht,2005.
    (37)Farrugia,L.J.WinGX and ORTEP for Windows:An update.J.Appl.Cryst.2012,45,849-854.
    (38)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G.E.;Robb,M.A.;Cheeseman,J.R.;Scalmani,G.;Barone,V.;Mennucci,B.;Petersson,G.A.;Nakatsuji,H.;Caricato,M.;Li,X.;Hratchian,H.P.;Izmaylov,A.F.;Bloino,J.;Zheng,G.;Sonnenberg,J.L.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Vreven,T.;Montgomery,J.A.Jr.;Peralta,J.E.;Ogliaro,F.;Bearpark,M.;Heyd,J.J.;Brothers,E.;Kudin,K.N.;Staroverov,V.N.;Kobayashi,R.;Normand,J.;Raghavachari,K.;Rendell,A.;Burant,J.C.;Iyengar,S.S.;Tomasi,J.;Cossi,M.;Rega,N.;Millam,J.M.;Klene,M.;Knox,J.E.;Cross,J.B.;Bakken,V.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Martin,R.L.;Morokuma,K.;Zakrzewski,V.G.;Voth,G.A.;Salvador,P.;Dannenberg,J.J.;Dapprich,S.;Daniels,A.D.;Farkas,?.;Foresman,J.B.;Ortiz,J.V.;Cioslowski,J.;Fox.D.J.Gaussian,Inc.,Wallingford CT 2010,Gaussian 09,Revision A.02.
    (39)Dennington,R.;Keith,T.;Millam,J.Semichem Inc.:Shawnee Mission,KS,USA 2009,Gauss View,Version 5.
    (40)Lee,C.;Yang,W.;Parr,G.Development of the colle-salvetti correlation-energy formula into a functional of the electron density.Phys.Rev.1988,B37,785-789.
    (41)Yanai,T.;Tew,D.P.;Handy,N.C.A.New hybrid exchange-correlation functional using the Coulomb-attenuating method(CAM-B3LYP).Chem.Phys.Lett.2004,393,51-57.
    (42)Krishnan,R.;Binkley,J.S.;Seeger,R.;Pople,J.A.A basis set for correlated wave functions.J.Chem.Phys.1980,72,650-654.
    (43)Wolinski,J.K.;Hincon,J.F.;Pulay,P.Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations.J.Am.Chem.Soc.1990,112,8251-8260.
    (44)Gross,E.K.U.;Kohn,W.Time-dependent density functional theory.Adv.Quant.Chem.1990,21,255-291.
    (45)Cances,E.;Mennucci,B.;Tomasi,J.A new integral equation formalism for the polarizable continuum model:theoretical background and applications to isotropic and anisotropic dielectrics.J.Chem.Phys.1997,107,3032-3041.
    (46)Xi,L.-Y.;Zhang,R.-Y.;Liang,S.;Chen,S.-Y.;Yu,X.-Q.A copper-catalyzed reaction of acetophenones and 1,3-diaminopropane provides direct access to 2-arylpyridines.A range of electronically diverse acetophenones undergo this transformation,affording 2-arylpyridines in good yields.Org.Lett.2014,16,5269-5271.
    (47)Nakamichi,N.;Kawashita,Y.;Hayashi,M.;Activated carbon-promoted oxidative aromatization of hantzsch 1,4-dihydropyridines and1,3,5-trisubstituted pyrazolines using molecular oxygen.Synthesis 2004,1015-1020.
    (48)Fang,X.;Liu,Y.-C.;Li,C.;9-Phenyl-10-methylacridinium:A highly efficient and reusable organocatalyst for mild aromatization of1,4-dihydropyridines by molecular oxygen.J.Org.Chem.2007,72,8608-8610.
    (49)Yadav,J.S.;Reddy,B.V.S.;Basak,A.K.;Baishya,G.;Narsaiah,A.V.;Iodoxybenzoic acid(IBX):an efficient and novel oxidizing agent for the aromatization of 1,4-dihydropyridines.Synthesis.2006,451-454.
    (50)Watts,J.D.;Huang,M.-L.Theoretical study of the tautomerism,structures,and vibrational frequencies of the phosphaalkenes XP=C(CH3)2(X=H,F,Cl,Br,OH,ArF(ArF=2,6-(CF3)2C6H3)).J.Phys.Chem.A.2009,113,1886-1891.
    (51)Garza,A.J.;Osman,O.I.;Wazzan,N.A.;Khan,S.B.;Gustavo,G.E.;Asiri,A.M.Photochromic and nonlinear optical properties of fulgides:Adensity functional theory study.Comp.Theoret.Chem.2013,1022,82-85.
    (52)Merrick,J.P.;Moran,D.;Radom,L.An evaluation of harmonic vibrational frequency scale factors.J.Phys.Chem.A 2007,111,11683-11700.
    (53)Dabbagh,H.A.;Teimouri,A.;Chermahini,A.N.;Shahraki M.DFT and ab initio study of structure of dyes derived from 2-hydroxy and 2,4-dihydroxy benzoic acids.Spectrochim.Acta 2008,Part A 69,449-459.
    (54)Abraham,R.J.;Mobli,M.An NMR,IR and theoretical investigation of 1H chemical shifts and hydrogen bonding in phenols.Magn.Reson.Chem.2007,45,865-877.
    (55)Dkhissi,A.;Houben,L.;Smets,J.;Adamowicz,L.;Maes,G.Density func-tional theory and ab-initio computational study of the2-hydroxypyridine/2-pyridone system:a comparison with FT-IR data from matrix isolation experiments,J.Mol.Struct.1999,484,215-227.
    (56)Green,J.H.S.;Harrison,D.J.Vibrational spectra of benzene derivatives-XVII.Benzonitrile and substituted benzonitriles.Spectrochim.Acta.A1976,32,1279-1286.
    (57)Fleming,I.Frontier Orbitals and Organic Chemical Reactions.Wiley,London.1976.
    (58)Kavitha,E.;Sandaraganesan,N.;Sebastian,S.Molecular structure,vibrational spectroscopic and HOMO,LUMO studies of 4-nitroaniline by density functional method.Indian.J.Pure.Appl.Phys.2010,48,20-30.
    (59)Kim,K.H.;Han,Y.K.;Jung.J.Basis set effects on relative energies and HOMO-LUMO energy gaps of fullerene C36,Theor.Chem.Acc.2005,113,233-237.
    (60)Aihara,J.Reduced HOMO-LUMO Gap as an index of kinetic ktability for polycyclic aromatic hydrocarbons J.Phys.Chem.A.1999.103,7487-7495.
    (61)Pearson,R.G.Chemical hardness and density functional theory.J.Chem.Sci.2005,117,369-377.
    (62)Chattaraj,P.K.;Maiti,B.HSAB principle applied to the time evolution of chemical reactions.J.Am.Chem.Soc.2003,125,2705-2710.
    (63)Parr,P.G.;Pearson,R.G.Absolute hardness:companion parameter to absolute electronegativity.J.Am.Chem.Soc.1983,105,7512-7516.
    (64)Charles,A.M.DFT study on structure,electronic properties,and reactivity of cis-isomers of[(NC5H4-S)2Fe(CO)2].J.Chem.Sci.2011,123,727-731.
    (65)Reis,H.Problems in the comparison of theoretical and experimental hyperpolarizabilities revisited.J.Chem.Phys.2006,125,0145061-9.
    (66)Kaatz,P.;Donley,E.A.;Shelton,D.P.A comparison of molecular hyperpolarizabilities from gas and liquid phase measurements.J.Chem.Phys.1997,108,849-856.
    (67)Sim,F.;Chin,S.;Dupuis,M.;Rice,J.E.Electron correlation effects in hyperpolarizabilities of p-nitroaniline.J.Phys.Chem.1993,97,1158-1163.
    (68)Thanthiriwatte,K.S.;Nalin de-S.K.M.Non-linear optical properties of novel fluorenyl derivatives-ab initio quantum chemical calculations.J.Mol.Struct.Theochem.2002,617,169-175.
    (69)Sriyanka,M.B.A.;Nalin,de-S.K.M.A comprehensive study of linear and non-linear optical properties of novel charge transfer molecular systems.J.Mol.Struct.Theochem.2004,678,31-38.
    (70)Asiri,A.M.;Khan,S.A.;Al-Amoudi,M.S.;Alamry,K.A.Synthesis,characterization,absorbance,fluorescence and non-linear optical properties of some donor acceptor chromophores.Bull.Korean Chem.Soc.2012,33,1900-1906.
    (71)Silverstein,R.M.;Bassler,G.C.;Morrill,T.C.Spectrometric identification of organic compounds.7th Ed.Hoboken,New Jersey:John Willey&Sons Inc.,1991,p72-126.
    (72)-Stratmann,R.E.;Scuseria,G.E.;Frisch,M.J.An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules.J.Chem.Phys.1998,109,8218-8124.
    (73)Tomasi,J.;Mennucci,B.;Cammi,R.Quantum mechanical continuum solvation models.Chem.Rev.2005,105,2999-3093.
    (74)Scrocco,E.;Tomasi,J.Electrostatic molecular potential analysis of electron density distribution in(ClAlMe2)2 and(AlCl3)2 Ad.Quantum.Chem.1978,11,115-121.
    (75)Luque,F.J.;Lopez,J.M.;Orozco,M.Electrostatic interactions of a solute with a continuum.A direct utilization of ab initio molecular potentials for the prevision of solvent effects.Theor.Chem.Acc.2000,103,343-345.
    (76)Reed,A.E.;Weinhold,F.Natural localized molecular orbitals.J.Chem.Phys.1985,83,1736-1740.
    (77)Reed,A.E.;Weinhold,F.Natural Population Analysis.J.Chem.Phys.1985,83,735-746.
    (78)Reed,A.E.;Weinhold,F.Natural bond orbital analysis of near-Hartree-Fock water dimer.J.Chem.Phys.1983,78,4066-4073
    (79)Foster,J.P.;Weinhold,F.Natural hybrid orbitals.J.Am.Chem.Soc.1980,102,7211-721.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700