2018年土地科学研究重点进展评述及2019年展望——土地工程与信息技术分报告
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress Review on Land Science Research in 2018 and Prospects for 2019: The Sub-report on Land Engineering and Information Technology
  • 作者:胡振琪 ; 王晓彤 ; 张冰松 ; 李勇 ; 陈洋 ; 赖小君 ; 张雪
  • 英文作者:HU Zhenqi;WANG Xiaotong;ZHANG Bingsong;LI Yong;CHEN Yang;LAI Xiaojun;ZHANG Xue;Institute of Land Reclamation and Ecological Restoration, China University of Mining and Technology;China Land Surveying and Planning Institute;
  • 关键词:土地整治 ; 土地开发 ; 土地复垦 ; 土地修复 ; 土地信息技术 ; 评述
  • 英文关键词:land consolidation;;land development;;land reclamation;;land remediation;;land information technology;;review
  • 中文刊名:ZTKX
  • 英文刊名:China Land Science
  • 机构:中国矿业大学(北京)土地复垦与生态重建研究所;中国国土勘测规划院;
  • 出版日期:2019-02-15
  • 出版单位:中国土地科学
  • 年:2019
  • 期:v.33;No.251
  • 基金:国土资源事务费项目“土地学科进展与土地科学前沿问题研究”(TD181602-01)
  • 语种:中文;
  • 页:ZTKX201902013
  • 页数:9
  • CN:02
  • ISSN:11-2640/F
  • 分类号:104-112
摘要
研究目的:归纳分析2018年国内外土地工程与信息技术领域的研究进展,展望2019年国内研究趋势。研究方法:文献法。研究结果:2018年国内研究重点主要集中在耕地后备资源开发、生态整治、村庄整理、充填复垦技术、植物与钝化剂修复、无人机摄影测量与遥感技术在土地信息采集中的广泛应用及3S技术尤其是合成孔径雷达干涉测量技术在土地动态监测中的广泛应用;国外研究侧重于降低开发密度、土地整理有限领域选择、土地复垦碳排放问题、联合修复技术、土地信息处理方法的革新及多源遥感技术在土地动态监测中的应用。研究结论:2018年土地工程与信息技术,随着生态文明体制的改革、乡村振兴战略的提出及3S技术的迅猛发展,在土地生态整治、土地复垦技术、土地修复方法、动态监测技术等方面有所发展。2019年,将继续推进土地生态建设、进一步提升复垦土壤质量、优化复垦技术、改进污染土地修复方法,发展土地信息技术,在以解决生态环境问题和坚决打好污染防治攻坚战的前提下,推动生态文明迈上新台阶。
        The purpose of this paper is to summarize the research progress on land engineering and information technology in 2018 and give prospect in 2019. The method of literature review was employed. The results indicate that: in 2018, the domestic studies mainly focused on the development in reserve resources of cultivated land, ecology renovation, land readjustment in rural residential area, filling technology, restoration of plants and deactivators, and the extensive utilization in land information collection with the technology of unmanned aerial vehicle photogrammetric and remote sensing, and land dynamic monitoring with interferometry technology of aperture radar, a special 3 S technology.The overseas studies focused on reduction in development density, finite field choice to land consolidation, problem with carbon emission in land reclamation, combined remediation technology, innovation on land information treatment,and the utilization of multi-source remote sensing technology in land dynamic monitoring. In conclusion, in 2018, land engineering and information technology made great progress mainly in the fields of land ecological renovation, land reclamation technologies, land remediation methods, dynamic monitoring methods and other fields with the accelerating pace of institutional reform in ecological civilization, proposal to rural revitalization strategy and tremendous development in 3 S technology. In 2019, more attention could be given to promotion of land ecological construction, further improvement in the quality of reclaimed soil, optimization to reclamation technology, innovation on remediation methods for polluted land and development of land information technology. In the context of solving the ecological environment problem and the problem of pollution control, the ecology civilization could be promoted to a new stage.
引文
[1]董光龙,张文信,杨忠学,等.山东省耕地后备资源宜耕性评价[J].中国农业大学学报,2018,23(8):160-170.
    [2]张文信,董光龙,杨忠学,等.山东省耕地后备资源变化及驱动因素分析[J].中国农业资源与区划,2018,39(1):117-123,139.
    [3]李靖,廖和平,蔡进.基于风险评价的低丘缓坡土地开发建设适宜性情景模拟——以重庆市巴南区为例[J].资源科学,2018,40(5):967-979.
    [4]康薇,王晓晴,张立强,等.怀来县未利用地开发生态敏感性研究[J].水土保持研究,2018,25(1):356-363.
    [5]沈悦,严金明,陈昊.基于“三生”空间优化的城乡交错区土地整治功能单元划定[J].农业工程学报,2018,34(11):243-252.
    [6]王婕,魏朝富,刘卫平,等.基于“三生”视角的山地丘陵区土地整治功能分区——以重庆市綦江区为例[J].地域研究与开发,2018,37(3):155-159,171.
    [7]高艺菡,高阳.基于三生视角的内蒙古自治区不同类型土地整治效益评价[J].中国农业大学学报,2018,23(3):75-83.
    [8]胡银根,董文静,余依云,等.土地整治供给侧结构性改革与乡村重构——潜江“华山模式”实证研究[J].地理科学进展,2018,37(5):731-738.
    [9]王丹,方斌,陈正富.基于辐射模型及潜力模型划分城乡地域功能的土地整治模式[J].农业工程学报,2018,34(13):270-278.
    [10]姚树荣,周毓君.乡村城镇化的市场驱动模式与实现路径——以成都市福洪镇为例[J].农村经济,2018(5):81-86.
    [11]张正峰,温阳阳,王若男.农村居民点整治意愿影响因素的比较研究——以浙江省江山市与辽宁省盘山县为例[J].中国土地科学,2018,32(3):28-34.
    [12]林建平,邓爱珍,赵小敏,等.公众参与度对土地整治项目规划方案满意度的影响分析[J].中国土地科学,2018,32(6):54-60.
    [13]李凡凡,刘友兆.农村居民点整理中参与式管理的满意度效应分析[J].农业技术经济,2018(6):116-126.
    [14]李凡凡,刘友兆.农村居民点整理不同阶段农户参与行为影响因素分析[J].农业工程学报,2018,34(3):249-257.
    [15]胡振琪,多玲花,王晓彤.采煤沉陷地夹层式充填复垦原理与方法[J].煤炭学报,2018,43(1):198-206.
    [16]王晓彤,胡振琪,梁宇生,等.基于水分特性的采煤沉陷地充填复垦黄河泥沙容重优选[J].农业工程学报,2018,34(16):258-264.
    [17]陈璟,杨宁.衡阳紫色土丘陵坡地植被恢复过程中土壤质量评价[J].草地学报,2018,26(1):160-167.
    [18]朱丽琴,黄荣珍,贾龙,等.植被恢复对退化红壤水稳性团聚体有机碳的影响[J].森林与环境学报,2018,38(1):76-83.
    [19]区晓琳,陈志彪,陈志强,等.亚热带侵蚀红壤区植被恢复过程中土壤团聚体化学计量特征[J].土壤学报,2018,55(5):1156-1167
    [20]杨怡,欧阳运东,陈浩,等.西南喀斯特区植被恢复对土壤氮素转化通路的影响[J].环境科学,2018,39(6):2845-2852.
    [21]胡芳,杜虎,曾馥平,等.典型喀斯特峰丛洼地不同植被恢复对土壤养分含量和微生物多样性的影响[J].生态学报,2018,38(6):2170-2179.
    [22]韩存亮,黄泽宏,肖荣波,等.粤北某矿区周边镉锌污染稻田土壤田间植物修复研究[J].生态环境学报,2018,27(1):158-165.
    [23]薛忠财,李纪红,李十中,等.能源作物甜高粱对镉污染农田的修复潜力研究[J].环境科学学报,2018,38(4):1621-1627.
    [24]王雨涵,陈冬月,江志勇,等. EDTA强化盐生植物修复Pb、Cd和盐渍化复合污染土壤[J].农业环境科学学报,2018,37(9):1866-1874.
    [25]费杨,阎秀兰,李永华.铁锰双金属材料在不同pH条件下对土壤As和重金属的稳定化作用[J].环境科学,2018,39(3):1430-1433,1435-1437.
    [26]朱凰榕,赵秋香,倪卫东,等.巯基—蒙脱石复合材料对不同程度Cd污染农田土壤修复研究[J].生态环境学报,2018,27(1):174-181.
    [27]李明,程寒飞,安忠义,等.化学淋洗与生物质炭稳定化联合修复镉污染土壤[J].环境工程学报,2018,12(3):904-913.
    [28]朱海斌,王妍,李亚梅.基于无人机的露天矿区测绘研究[J].煤炭工程,2018,50(10):162-166.
    [29]马国超,王立娟,马松,等.无人机摄影测量在矿山尾矿库建设规划的应用[J].测绘科学,2018,43(1):84-88.
    [30]王玮,王浩,李卫正,等.基于小型无人机摄影测量的江南景观水资源综合利用分析[J].南京林业大学学报(自然科学版),2018,42(1):7-14.
    [31]宋晓阳,黄耀欢,董东林,等.融合数字表面模型的无人机遥感影像城市土地利用分类[J].地球信息科学学报,2018,20(5):703-711.
    [32]施开分.无人机在农作物面积实地调查中应用的效用分析[J].调研世界,2018(3):28-32.
    [33]贾曙光,金爱兵,赵怡晴.无人机摄影测量在高陡边坡地质调查中的应用[J].岩土力学,2018,39(3):1130-1136.
    [34]张正明,张志勋,常永青,等.土地利用遥感信息提取关键技术探讨[J].测绘通报,2018(5):97-101,156.
    [35]王勇,张寅玲,尤淑撑,等.资源一号02C卫星数据在土地整理项目验收核查中的应用[J].国土资源遥感,2018,30(1):144-149.
    [36]李茂森,王继军,陈超,等.基于GIS的安塞县县南沟流域农用地生态适宜性评价[J].水土保持研究,2018,25(1):237-242.
    [37]张泽民,吕昌河,谢苗苗,等.基于WorldView 2影像的矿区植被重建效果评估[J].生态学报,2018,38(4):1301-1310.
    [38]姜畅,刘鸿雁,陈竹,等.基于GIS的红枫湖流域土地利用变化与水质响应[J].农业环境科学学报,2018,37(6):1232-1239.
    [39]郭山川,汤傲,李效顺,等.融合主被动遥感的乌海矿区土地损伤测度[J].生态与农村环境学报,2018,34(8):678-685.
    [40]谢臻,张凤荣,高阳,等.基于遥感和GIS的平原和山区贫困县农村耕地利用演变对比[J].农业工程学报,2018,34(15):255-263.
    [41]杜国明,马敬盼,春香.现代化农区耕地利用形态转型研究[J].中国农业资源与区划,2018,39(3):185-192.
    [42]张瑜,赵晓丽,左丽君,等.黄土高原生态系统服务价值动态评估与分析[J].水土保持研究,2018,25(3):170-176.
    [43]王世东,贾策.基于遥感的生态服务价值测算与土地利用动态变化[J].水土保持研究,2018,25(3):258-264,375.
    [44]朱天龙,吕君.基于GIS的希拉穆仁草原旅游区景观类型的动态变化及分析[J].干旱区资源与环境,2018,32(10):95-99.
    [45]孙桂芬,覃先林,尹凌宇,等.基于时序高分一号宽幅影像火后植被光谱及指数变化分析[J].光谱学与光谱分析,2018,38(2):511-517.
    [46]史莎娜,汤传勇,谢炳庚,等.喀斯特山地草地资源遥感调查及常态化监测研究——以灌阳县为例[J].草业学报,2018,27(1):14-21.
    [47]GNAGEY M K. Wetlands and open space:the impact of environmental regulations on land use patterns[J]. Journal of Environmental Management, 2018, 225:148-159.
    [48]DAVID R, JAVIER M. Protected area effectiveness against land development in Spain[J]. Journal of Environmental Management, 2018, 215:345-357.
    [49]BENJAMIN R S, SHAH M, BHAVEN N. Land development and traffic composition at rural interstate highway interchanges in Ohio[J]. Journal of Transportation Engineering Part a-Systems, 2018, 144(7):2473-2907.
    [50]TOMIC H, IVIC S M, ROIC M. Land consolidation suitability ranking of cadastral municipalities:information-based decision-making using multi-criteria analyses of official registers’ data[J]. ISPRS International Journal of GeoInformation, 2018, 7(3):87-104.
    [51]PRZEMYSLAW L. An algorithm for selecting groups of factors for prioritization of land consolidation in rural areas[J].Computers&selectronics in Agriculture, 2018, 144:216-221.
    [52]JUSTYNA W, PRZEMYSLAW L, KATARZYNA S. The proposed algorithm for identifying agricultural problem areas for the needs of their reasonable management under land consolidation works[J]. Computers and Electronics in Agriculture, 2018, 152:333-339.
    [53]HAKORIMANA, AKCAOZ H. The functional analysis of maize production and the effect of land consolidation on the productivity in Rwanda[J]. Journal of Animal&Plant Sciences, 2018, 28(1):280-289.
    [54]DJANIBEKOV U, FINGER R. Agricultural risks and farm land consolidation process in transition countries:the case of cotton production in Uzbekistan[J]. Agricultural Systems,2018, 164:223-235.
    [55]AHIRWAL J, MAITI S K. Development of technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India[J]. Catena,2018, 166:114-123.
    [56]AHIRWAL J, KUMAR A, PIETRZYKOWSKRI M, et al.Reclamation of coal mine spoil and its effect on Technosol quality and carbon sequestration:a case study from India[J].Environmental Science and Pollution Research, 2018, 25(28):27992-28003.
    [57]SKOUSEN J G, DALLAIRE K. Plantation performance of chestnut hybrids and progenitors on reclaimed Appalachian surface mines[J]. New Forests, 2018, 49(5):599.
    [58]KUMAR S, SINGH A K, GHOSH P. Distribution of soil organic carbon and glomalin related soil protein in reclaimed coal mineland chrono sequence under tropical condition[J]. Science of the Total Environment, 2018, 625:1341-1350.
    [59]SINGH A K. Toxic aqueous discharge of iron and sulphur from spoiled coal mined lands and its control by phyto stabilization process[J]. Current Science, 2018, 115(3):529-534.
    [60]CHANG J H, DONG C D. The lead contaminated land treated by the circulation-enhanced electrokinetics and phytoremediation in field scale[J]. Journal of Hazardous Materials, accepted, DOI:10.1016/j.jhazmat.2018.08.085.
    [61]KOMINKOVA D, FABBRICINO M, GURUNG B, et al.Sequential application of soil washing and phytoremediation inthelandoffires[J].JournalofEnvironmental Management, 2018, 206:1081-1089.
    [62]RUTHROF K X, FONTAINE J B, HOPKINS A J. Potassium amendment increases biomass and reduces heavy metal concentrations in Lablab purpureus after phosphate mining[J].Land Degradation&Development, 2018, 29(3):398-407.
    [63]DESJARDINS D, BRERETON N B, MARCHAND L, et al.Complementarity of three distinctive phytoremediation crops for multiple-trace element contaminated soil[J]. Science of the Total Environment, 2018, 610:1428-1438.
    [64]JAIN P, RAMSANKARAN R. GIS-based modelling of soil erosion processes using the modified-MMF(MMMF)model in a large watershed having vast agro-climatological differences[J]. Earth Surface Processes and Landforms, 2018, 43(10):2064-2076.
    [65]NOORI H, KARAMI H, FARZIN S, et al. Investigation of RS and GIS techniques on MPSIAC model to estimate soil erosion[J]. Natural Hazards, 2018, 91(1):221-238.
    [66]THOMAS J, JOSEPH S, THRIVIKRAMJI K P. Assessment of soil erosion in a tropical mountain river basin of the southern Western Ghats, India using RUSLE and GIS[J].Geoscience Frontiers, 2018, 9(3):893-906.
    [67]PRUEKSAKORN K, GONZALEZ J C, KESON J, et al. A GIS-based tool to estimate carbon stock related to changes in land use due to tourism in Phuket Island, Thailand[J]. Clean Technologies and Environmental Policy, 2018, 28(3):561-571.
    [68]KAZEMI H, AKINCI H. A land use suitability model for rainfed farming by Multi-criteria Decision-making Analysis(MCDA)and Geographic Information System(GIS)[J].Ecological Engineering, 2018, 116:1-6.
    [69]LAMQADEMAA,PRADHANB,SABERH,etal.Desertification sensitivity analysis using MEDALUS Model and GIS:a case study of the Oases of Middle Draa Valley,Morocco[J]. Sensors, 2018, 18(7):2230-2249.
    [70]MUSAKWA W. Identifying land suitable for agricultural land reform using GIS-MCDA in South Africa[J]. Environment Development and Sustainability, 2018, 20(5):2281-2299.
    [71]ASLAN G, CAKIR Z, ERGINTAV S, C, et al. Analysis of secular ground motions in Istanbul from a long-term InSAR time-series(1992-2017)[J]. Remote Sensing, 2018, 10(3):408-426.
    [72]FANOS A M, PRADHAN B, Mansor S, et al. A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data[J]. Landslides, 2018, 15(9):1833-1850.
    [73]HOSSEINALIZADEH M, KARIMINEJAD N, ALINEJAD M.An application of different summary statistics for modelling piping collapses and gully headcuts to evaluate their geomorphological interactions in Golestan Province, Iran[J].Catena, 2018, 171:613-621.
    [74]YAPRAK S, YILDIRIM O, SUSAM T. New approach for agricultural research and monitoring of land slide:using of UAV system[J]. Journal Of Environmental Protection And Ecology, 2018, 19(1):246-256.
    [75]AIMAITI Y, YAMAZAKI F, LIU W. Multi-sensor InSAR analysis of progressive land subsidence over the Coastal City of Urayasu, Japan[J]. Remote Sensing, 2018, 10(8):3390-3415.
    [76]IERSEL W V, STRAATSMA M, MIDDELKOOP H, et al.Multitemporal classification of river floodplain vegetation using time series of UAV images[J]. Remote Sensing, 2018,10(7):1144-1162.
    [77]TALBOTB,RAHLFJ,ASTRUPR.Anoperational UAV-based approach for stand-level assessment of soil disturbance after forest harvesting[J]. Scandinavian Journal of Forest Research, 2018, 33(4):387-396.
    [78]NHAMO L, DIJK R V, MAGIDI J, et al. Improving the accuracy of remotely sensed irrigated areas using postclassification enhancement through UAV capability[J].Remote Sensing, 2018, 10(5):1304-1329.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700