废水处理不同脱氮路径盐分形成与影响因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of salt formation and its influencing factors in different nitrogen removal routes for wastewater treatment
  • 作者:何美玲 ; 韦朝海 ; 吴海珍 ; 邱光磊 ; 潘建新
  • 英文作者:HE Meiling;WEI Chaohai;WU Haizhen;QIU Guanglei;PAN Jianxin;School of Environment and Energy, South China University of Technology;School of Bioscience and Bioengineering, South China University of Technology;
  • 关键词:废水处理 ; 生物脱氮 ; 厌氧氨氧化 ; 反硝化 ; 减盐 ; 电导率
  • 英文关键词:wastewater treatment;;biological nitrogen removal;;anammox;;denitrification;;salt reduction;;conductivity
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:华南理工大学环境与能源学院;华南理工大学生物科学与工程学院;
  • 出版日期:2019-01-16 16:09
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金(No.51778238,51878290);; 广东省科技项目(No.2015B020235005)
  • 语种:中文;
  • 页:HJXX201905017
  • 页数:9
  • CN:05
  • ISSN:11-1843/X
  • 分类号:159-167
摘要
我国工业废水处理的目标不仅是通过消除污染物降低生态风险,还期望通过脱盐技术实现水回用,处理过程中盐分的形成及其减量对于技术的经济性具有重要意义.以生物脱氮不同路径盐分形成与影响因素的分析为研究对象,以电导率作为盐分削减的指标,以NH~+_4-N、NO~-_2-N、NO~-_3-N、SCN~-作为考察的污染物,把总氮去除作为目的,从电子供体种类/比例、碳源、碱和磷盐的投加量以及水力停留时间(HRT)等主要因素对传统硝化反硝化、短程硝化反硝化和厌氧氨氧化3种工艺进行对比研究,讨论了模拟焦化废水原位减盐的效果.结果表明:①以目标去除进水中200 mg·L~(-1)NO~-_2-N/NO~-_3-N为基准,3种脱氮路径盐分削减能力顺序为:厌氧氨氧化(41.97%)>短程反硝化(26.12%)>传统反硝化(11.16%);②在最优工况条件(NO~-_2-N/NH~+_4-N=1.33,c(NaHCO_3)=100 mg·L~(-1),HRT=18 h)下,厌氧氨氧化的减盐率、NO~-_2-N和NH~+_4-N的降解率均达到最佳,分别为41.97%、100%和99.38%;③相比较于单一的SCN~-或者苯酚,SCN~-与苯酚共同作为电子供体的脱氮减盐效果更佳;④SCN~-∶苯酚的电子供体比例为1∶3,HRT=38 h时,短程反硝化与传统反硝化脱氮减盐效果同时达到最优,其中短程反硝化的减盐率、NO~-_2-N及SCN~-的降解率分别为26.12%、82.95%、100%,传统反硝化的减盐率、NO~-_3-N及SCN~-的降解率分别为11.16%、100%、100%.研究工作可为寻求废水处理优化的脱盐路径提供指导.
        The goal of industrial wastewater treatment in China is not only to reduce ecological risk by eliminating pollutants, but also to realize water reuse by desalination. The formation and reduction of salinity in the treatment process is of great significance to the economy of technology. In order to reach the purpose of removing total nitrogen, conductivity was taken as an index of salt reduction and NH~+_4-N, NO~-_2-N, NO~-_3-N and SCN~- were taken as pollutants. The effects of denitrification and salt reduction in traditional nitrification-denitrification, short-cut nitrification-denitrification and anaerobic ammonia oxidation processes were controlled by electron donor species/ratio, carbon source, alkalinity and phosphorous input and hydraulic retention time(HRT). The in-situ desalination effects of simulated coking wastewater in different biological denitrification pathways were compared. The results showed that: ①based on the target removal of 200 mg·L~(-1) NO~-_2-N/NO~-_3-N in influent, the order of salt reduction ability of the three nitrogen removal pathways was anaerobic ammonia oxidation(41.97%) > short-cut denitrification(26.12%) > traditional denitrification(11.16%); ② under the optimal operating conditions(NO~-_2-N/NH~+_4-N = 1.33, c(NaHCO_3) = 100 mg·L~(-1), HRT = 18 h), the salt reduction rate, the degradation rates of NO~-_2-N and NH~+_4-N in anaerobic ammonia oxidation reached the optimum, which were 41.97%, 100% and 99.38% respectively; ③ compared with single SCN~- or phenol, SCN~- and phenol as electron donors had better denitrification and salt reduction performance; ④when the ratio of SCN~- to phenol electron donor was 1∶3 and HRT = 38 h, the short-cut denitrification and traditional denitrification achieved the best treatment efficiency. The reduction rates of salt, NO~-_2-N and SCN~- in short-cut denitrification were 11.16%, 100% and 100% respectively. The reduction rates of salt, NO~-_3-N and SCN~- in traditional denitrification were 26.12%, 82.95% and 100% respectively. This work provides guidance for seeking optimized desalination routes for wastewater treatment.
引文
Bajaj M,Gallert C,Winter J.2010.Effect of phenol addition on COD and nitrate removal in an anoxic suspension reactor[J].Bioresource Technology,101(14):5159-5167
    Bi Z,Takekawa M,Park G,et al.2015.Effects of the C/N ratio and bacterial populations on nitrogen removal in the simultaneous anammox and heterotrophic denitrification process:mathematic modeling and batch experiments[J].Chemical Engineering Journal,280:606-613
    Chen H,Zhao X,Cheng Y,et al.2018.Iron robustly stimulates simultaneous nitrification and denitrification under aerobic conditions[J].Environmental Science & Technology,52(3):1404-1412
    Chung J,Amin K,Kim S,et al.2014.Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor[J].Water Research,58:169-178
    European Fertilizer Manufacturers Association.2000.Phosphorus:essential element for food production[J].European Fertilizer Manufacturers Association (EFMA),Brussels:9-10
    Fernández-Nava Y,Maranon E,Soons J,et al.2008.Denitrification of wastewater containing high nitrate and calcium concentrations[J].Bioresource Technology,99(17):7976-7981
    Fritzmann C,L?wenberg J,Wintgens T,et al.2007.State-of-the-art of reverse osmosis desalination[J].Desalination,216(1/3):1-76
    国家生态环境部.2015.全国环境统计公报[R].http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqgdwrywrwpfbz/index_2.shtml
    Goodman B L,Englande Jr A J.1974.A unified model of the activated sludge process[J].Water Pollution Control Federation,46(2):312-332
    郝晓地,衣兰凯,王崇臣,等.2010.磷回收技术的研发现状及发展趋势[J].环境科学学报,30(5):897-907
    Jin X,Li E,Lu S,et al.2013.Coking wastewater treatment for industrial reuse purpose:combining biological processes with ultrafiltration,nanofiltration and reverse osmosis[J].Journal of Environmental Sciences,25(8):1565-1574
    Kumar R,Pal P.2015.A novel forward osmosis-nano filtration integrated system for coke-oven wastewater reclamation[J].Chemical Engineering Research and Design,100:542-553
    Lawrence A W,McCarty P L.1970.Unified basis for biological treatment design and operation[J].Journal of the Sanitary Engineering Division,96(3):757-778
    Li J,Wu J,Sun H,et al.2016.Advanced treatment of biologically treated coking wastewater by membrane distillation coupled with pre-coagulation[J].Desalination,380:43-51
    李湘溪,吴超飞,吴海珍,等.2016.焦化废水处理过程中盐分变化及其影响因素[J].化工进展,35(11):3690-3700
    Ma B,Qian W,Yuan C,et al.2017.Achieving mainstream nitrogen removal through coupling anammox with denitratation[J].Environmental Science & Technology,51(15):8405-8413
    Miao Y,Wang Z,Liao R,et al.2017.Assessment of phenol effect on microbial community structure and function in an anaerobic denitrifying process treating high concentration nitrate wastewater[J].Chemical Engineering Journal,330:757-763
    Mulder A,Van de Graaf A A,Robertson L A,et al.1995.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J].FEMS Microbiology Ecology,16(3):177-183
    Omena S P F,Sader L T,Silva E L.2013.Simultaneous removal of phenol and nitrate in an anoxic fluidized bed reactor[J].Journal of Environmental Science and Health,Part A,48(5):581-591
    Pan J,Ma J,Wu H,et al.2019.Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J].Water Research,150:216-224
    Pan J,Ma J,Wu H,et al.2018.Simultaneous removal of thiocyanate and nitrogen from wastewater by autotrophic denitritation process[J].Bioresource Technology,267:30-37
    Pan J,Wei C,Fu B,et al.2018.Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate[J].Bioresource Technology,252:20-27
    Pradhan H,Ghangrekar M M.2015.Organic matter and dissolved salts removal in a microbial desalination cell with different orientation of ion exchange membranes[J].Desalination and Water Treatment,54(6):1568-1576
    Pradhan H,Shinde O A,Ghangrekar M M,et al.2015.Bioremediation of Steel Plant Wastewater and Improved Electricity Generation in Bio-Electrochemical Desalination Cell[C].Advanced Materials Research.Trans Tech Publications,1130:648-651
    Strous M,Heijnen J J,Kuenen J G,et al.1998.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Microbiology and Biotechnology,50(5):589-596
    Sun X,Wang C,Li Y,et al.2015.Treatment of phenolic wastewater by combined UF and NF/RO processes[J].Desalination,355:68-74
    Sun Y,Guan Y,Wang H,et al.2019.Autotrophic nitrogen removal in combined nitritation and Anammox systems through intermittent aeration and possible microbial interactions by quorum sensing analysis[J].Bioresource Technology,272:146-155
    Van der Heijden R,Heijnen J J,Hellinga C,et al.1994.Linear constraint relations in biochemical reaction systems:I.Classification of the calculability and the balanceability of conversion rates[J].Biotechnology and Bioengineering,43(1):3-10
    Wang Y N,Goh K,Li X,et al.2018.Membranes and processes for forward osmosis-based desalination:Recent advances and future prospects[J].Desalination,434:81-99
    Xie G J,Cai C,Hu S,et al.2016.Complete nitrogen removal from synthetic anaerobic sludge digestion liquor through integrating anammox and denitrifying anaerobic methane oxidation in a membrane biofilm reactor[J].Environmental Science & Technology,51(2):819-827
    Yin N,Yang G,Zhong Z,et al.2011.Separation of ammonium salts from coking wastewater with nanofiltration combined with diafiltration[J].Desalination,268(1/3):233-237
    袁林江,彭党聪.2000.短程硝化—反硝化生物脱氮[J].中国给水排水,16(2):29-31
    Zhu T,Cheng H Y,Yang L,et al.2019.Coupled sulfur and iron (II) carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal[J].Environmental Science & Technology,53(3):1545-1554
    Zuo K,Cai J,Liang S,et al.2014.A ten liter stacked microbial desalination cell packed with mixed ion-exchange resins for secondary effluent desalination[J].Environmental Science & Technology,48(16):9917-9924

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700