Fe(Ⅲ)/Fe(Ⅱ)铁氧体工艺原位处理PVA废水及其沉淀物回收利用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In Situ Treatment of Simulated PVA Wastewater by Fe( Ⅲ) /Fe( Ⅱ) Ferrite Process and the Final Precipitates Reuse
  • 作者:郝昊天 ; 韩昆 ; 石宝友 ; 王毅力
  • 英文作者:HAO Haotian;HAN Kun;SHI Baoyou;WANG Yili;College of Environmental Science and Engineering,Beijing Forestry University;College of Petrochemical Engineering,Lanzhou University of Technology;Key Laboratory of Drinking Water Science and Technology,Research Center for Eco-Environmental Sciences;University of Chinese Academy of Sciences;
  • 关键词:铁氧体法 ; PVA(聚乙烯醇) ; 四氧化三铁(Fe3O4) ; 原位处理 ; 回收利用
  • 英文关键词:ferrite process;;polyvinyl alcohol;;Fe3O4;;in-situ processing;;reuse
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:北京林业大学环境科学与工程学院;兰州理工大学石油化工学院;中国科学院饮用水科学与技术国家重点实验室;中国科学院大学;
  • 出版日期:2018-08-01 15:49
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.253
  • 基金:国家重点研发计划项目(No.2016YFA0203204);; 国家自然科学基金项目(No.51478041,51678053)~~
  • 语种:中文;
  • 页:HJKX201902021
  • 页数:7
  • CN:02
  • ISSN:11-1827/X
  • 分类号:164-170
摘要
为了评价Fe(Ⅲ)/Fe(Ⅱ)铁氧体工艺对PVA(聚乙烯醇)废水处理的可行性,采用Fe(Ⅲ)/Fe(Ⅱ)铁氧体工艺原位处理PVA模拟废水,考察不同作用时间、总铁投加量、初始ρ(PVA)和废水硬度对该工艺处理效果的影响.利用XRD(X射线衍射)、FT-IR(傅里叶转换红外光谱)、BET比表面积、VSM(磁滞回线测试)对沉淀物进行表征,解析该工艺原位处理PVA模拟废水的主要机理,并以该工艺沉淀物为吸附剂,通过锑吸附试验,探讨该工艺沉淀物的回用性.结果表明:(1)Fe(Ⅲ)/Fe(Ⅱ)铁氧体工艺对PVA模拟废水具有良好的处理能力,初始ρ(PVA)为1 000 mg/L时,该工艺在20 min以内即可达到80%以上的去除率,并且基本没有金属铁的残余,该工艺对PVA的去除率随总铁投加量的增加而提高且基本不受水体硬度影响.(2)在Fe(Ⅲ)/Fe(Ⅱ)铁氧体工艺对PVA的原位去除过程中,PVA作为一种反应物参与沉淀物Fe3O4的生成,并促进纳米Fe3O4比表面积增大,最终形成一种类似于凝胶的Fe3O4聚合物.(3)Fe(Ⅲ)/Fe(Ⅱ)铁氧体工艺可高效处理模拟PVA-MB(亚甲基蓝)染料废水.对于含有100 mg/L MB(亚甲基蓝三水)和500 mg/L PVA的混合溶液,MB和CODCr去除率在1 min时分别达到97. 37%和89. 47%.沉淀物通过磁分离、乙醇和水清洗后,在水中浸出的ρ(TOC)和ρ(CODCr)很低,分别为0. 86和2 mg/L,可作为吸附剂直接使用,得益于其具有较高的比表面积,对金属锑的拟合吸附量可达71. 94 mg/g.(4)Fe(Ⅲ)/Fe(Ⅱ)铁氧体工艺具有一定的实际应用价值.对东莞某实际印染废水处理5 min,CODCr和染料的去除率分别为85. 71%和98. 98%.研究显示,Fe(Ⅲ)/Fe(Ⅱ)铁氧体工艺可高效去除PVA,沉淀物为易回收的磁性Fe3O4,可作为吸附剂直接使用.
        To investigate the applicability of Fe( Ⅲ) /Fe( Ⅱ) ferrite process for PVA( polyvinyl alcohol) wastewater treatment,a Fe( Ⅲ) /Fe( Ⅱ) ferrite process was used. Several operational conditions including reaction time,total iron dosage,initial PVA concentration and wastewater hardness were evaluated. The corresponding removal mechanisms were determined through characterization the final precipitates. The recyclability of the final precipitates was also investigated using the cleaned precipitates as an antimony adsorbent. The results show that:( 1) The Fe( Ⅲ) /Fe( Ⅱ) ferrite process exhibited a good performance in PVA wastewater treatment.When initial PVA concentration was 1000 mg/L in the wastewater,more than 80% of PVA was removed within 20 minutes with almost norelease of heavy metals. The PVA removal increased with increasing iron dosage and slightly depended on the hardness of wastewater.( 2) PVA,as a reactant,increased the specific surface area of Fe3 O4 formed during the treatment process and a gel-like Fe3 O4 polymer was finally formed.( 3) The Fe( Ⅲ) /Fe( Ⅱ) ferrite process could efficiently treat simulated PVA-MB( methylene blue) dye wastewater.For simulated PVA-MB wastewater containing 100 mg/L MB and 500 mg/L PVA,after a minute treatment MB and CODCrremoval reached97. 37% and 89. 47%,respectively. After magnetic separation and washing by ethanol and water,the TOC and CODCrleaching from the precipitates was 0. 86 and 2 mg/L,respectively. Therefore,the precipitates could be directly reused as adsorbents. Due to the high surface area,the maximum antimony( Ⅲ) adsorption capacity of the precipitates was 71. 94 mg/g.( 4) The Fe( Ⅲ) /Fe( Ⅱ) ferrite process has practical value for engineering application. For an actual printing and dyeing wastewater from Dongguan,the removal rates of CODCrand dye could reach 85. 71% and 98. 98% within 5 min,respectively. This study shows that the Fe( Ⅲ) /Fe(Ⅱ) ferrite process is very effective for PVA removal,and the formed magnetite precipitates can be easily collected and directly reused.
引文
[1] YE Bei,LI Yue,CHEN Zhuo,et al.Degradation of polyvinyl alcohol(PVA)by UV/chlorine oxidation:radical roles,influencing factors,and degradation pathway[J]. Water Research,2017,124:381-387.
    [2] ZHANG Jie,WANG Shuzhong,GUO Yang,et al.Supercritical water oxidation of polyvinyl alcohol and desizing wastewater:influence of Na OH on the organic decomposition[J]. Journal of Environmental Sciences,2013,25(8):1583-1591.
    [3]朱燕.我国聚乙烯醇的市场分析[J].精细与专用化学品,2017,25(7):18-23.ZHU Yan.Market analysis of polyvinyl alcohol in China[J].Fine&Specialty Chemicals,2017,25(7):18-23.
    [4]董德明,曹珍,闫征楚,等.臭氧-超声联用处理聚乙烯醇废水[J].吉林大学学报(地球科学版),2016,46(4):1191-1198.DONG Deming,CAO Zhen,RUN Zhengchu,et al. Treatment research of polyvinyl alcohol wastewater by ozone/ultrasound oxidation process[J]. Journal of Jilin University(Earth Science Elition),2016,46(4):1191-1198.
    [5] SUN Weihua,CHEN Jun,CHEN Lujun,et al. Coupled electron beam radiation and MBR treatment of textile wastewater containing polyvinyl alcohol[J].Chemosphere,2016,155:57-61.
    [6]张玉山,郭津霞,周志强.脱稳凝结-芬顿氧化处理PVA退浆废水[J].中国环保产业,2016(5):57-59.ZHANG Yushan,GUO Jinxia,ZHOU Zhiqiang. Wastewater of PVA De-slurry treated by De-steady coagulation:Fenton oxidation[J].China Environmental Protection Industry,2016(5):57-59.
    [7] GIROTO J A,GUARDANI R,TEIXEIR A,et al. Study on the photo-Fenton degradation of polyvinyl alcohol in aqueous solution[J].Chemical Engineering and Processing:Process Intensification,2006,45(7):523-532.
    [8] CHOU Weilung,WANG Chita,HUANG Kaiyu. Investigation of process parameters for the removal of polyvinyl alcohol from aqueous solution by iron electrocoagulation[J].Desalination,2010,251(1):12-19.
    [9]来风习,王九思,杨玉华.铁氧体法处理重金属废水研究[J].甘肃联合大学学报(自然科学版),2006(3):64-66.LAI Fengxi,WANG Jiusi,YANG Yuhua. Research on ferrite methods for treatment of heavy metals waste water[J]. Journal of Gansu Lianhe University(Natural Science Edition),2006(3):64-66.
    [10] TU Yaojen,YOU Chenfeng,CHANG C K,et al.Adsorption behavior of As(Ⅲ)onto a copper ferrite generated from printed circuit board industry[J]. Chemical Engineering Journal,2013,225:433-439.
    [11]韩志勇,韩昆,郝昊天,等.铜铁氧体法处理模拟染料废水[J].环境科学,2018,39(3):1-11.HAN Zhiyong,HAN Kun,HAO Haotian,et al. Treating simulated dye wastewater by an in situ copper ferrite process[J].Environmental Science,2018,39(3):1-11.
    [12] PEREZ O P,UMETSU Y.ORP-monitored magnetite formation from aqueous solutions at low temperatures[J]. Hydrometallurgy,2000,55(1):35-56.
    [13] LU Xixin,HUANGFU Xiaoliu,ZHANG Xiang,et al. Strong enhancement of trace mercury removal from aqueous solution with sodium thiosulfate by in situ formed Mn-(hydr)oxides[J]. Water Research,2014,65:22-31.
    [14] XU Meng,WANG Hongjie,LEI Di,et al.Removal of Pb(Ⅱ)from aqueous solution by hydrous manganese dioxide:adsorption behavior and mechanism[J]. Journal of Environmental Sciences,2013,25(3):479-486.
    [15] ZHANG Lizhu,MA Jun,YU Min. The microtopography of manganese dioxide formed in situ and its adsorptive properties for organic micropollutants[J]. Solid State Sciences,2008,10(2):148-153.
    [16] LIAO Xiaoping,ZHANG Caixiang,LIU Yuan,et al. Abiotic degradation of methyl parathion by manganese dioxide:kinetics and transformation pathway[J].Chemosphere,2016,150:90-96.
    [17]熊杰.新生态MnO2对活性艳红染料废水的处理研究[J].环境与发展,2014,26(3):83-85.XIONG Jie. Studies on treatment of reactive brilliant red X-3B wastewater using MnO2formed in situ[J]. Environment and Development,2014,26(3):83-85.
    [18] HAO Haotian,WANG Yili,SHI Baoyou,et al.Strong enhancement of methylene blue removal from binary wastewater by in-situ ferrite process[J].Journal of Environmental Sciences,2018,73:107-116.
    [19] FINLEY J H.Spectrophotometric determination of polyvinyl alcohol in paper coatings[J]. Analytical Chemistry,1961,33(13):1925-1927.
    [20]丁明,孙虹,皇甫立霞,等.壳聚糖对中和共沉淀法Fe3O4微晶生成的影响[J].磁性材料及器件,1999,30(3):40-43.
    [21] MENG Jianhua,YANG Guiqin,YAN Lemei,et al. Synthesis and characterization of magnetic nanometer pigment Fe3O4[J]. Dyes and Pigments,2005,66(2):109-113.
    [22] WANG Weixing,XU Zhenghe,FINCH J. Fundamental study of an ambient temperature ferrite process in the treatment of acid mine drainage[J].Environmental Science&Technology,1996,30(8):2604-2608.
    [23] LI Wenlu,WU Jiewei,LEE S S,et al. Surface tunable magnetic nano-sorbents for carbon dioxide sorption and separation[J].Chemical Engineering Journal,2017,313:1160-1167.
    [24] BAO Shuangyou,TANG Lihong,LI Kai,et al. Highly selective removal of Zn(Ⅱ)ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2magnetic nano-adsorbent[J].Journal of Colloid and Interface Science,2016,462:235-242.
    [25]胡颜刚,张念,李桥,等.红外光谱法测定聚乙烯醇结晶度的研究[J].工程塑料应用,2014,42(9):73-77.HU Yangang, ZHANG Nian, LI Qiao, et al. Crystallinity determination of polyvinyl alcohol by infrared spectrometry[J].Engineering Plastics Application,2014,42(9):73-77.
    [26] WU Baile,FANG Liping,FORTNER J D,et al.Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4nanocomposites[J].Water Research,2017,126:179-188.
    [27] OH S Y,KIM H W,PARK J M,et al.Oxidation of polyvinyl alcohol by persulfate activated with heat,Fe2+,and zero-valent iron[J].Journal of Hazardous Materials,2009,168(1):346-351.
    [28] CHOU Weilung.Removal and adsorption characteristics of polyvinyl alcohol from aqueous solutions using electrocoagulation[J].Journal of Hazardous Materials,2010,177(1):842-850.
    [29] CHU Wenhai,GAO Naiyun,YIN Daqiang,et al. Impact of UV/H2O2pre-oxidation on the formation of haloacetamides and other nitrogenous disinfection byproducts during chlorination[J].Environmental Science&Technology,2014,48(20):12190-12198.
    [30] LIN C C,LEE L T,HSU L J. Degradation of polyvinyl alcohol in aqueous solutions using UV-365 nm/S2O82-process[J].International Journal of Environmental Science and Technology,2014,11(3):831-838.
    [31] LIN C C,HSU L J. Removal of polyvinyl alcohol from aqueous solutions using P-25 Ti O2and Zn O photocataysts:a comparative study[J].Powder Technology,2013,246:351-355.
    [32] QI Zenglu,LAN Huachun,JOSHI T P,et al. Enhanced oxidative and adsorptive capability towards antimony by copper-doping into magnetite magnetic particles[J]. Rsc Advances,2016,6(71):66990-67001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700