受限在一维纳米孔道内的高分子结晶取向模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Model for the Crystal Orientation of Polymers Confined in 1D Nanocylinders
  • 作者:苏萃 ; 施光宇 ; 王笃金 ; 刘国明
  • 英文作者:Cui Su;Guang-yu Shi;Du-jin Wang;Guo-ming Liu;CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:高分子结晶 ; 受限 ; 取向 ; 阳极氧化铝模板 ; 等规聚丙烯
  • 英文关键词:Polymer crystallization;;Confinement;;Orientation;;Anodic aluminum oxide;;Isotactic polypropylene
  • 中文刊名:GFXB
  • 英文刊名:Acta Polymerica Sinica
  • 机构:中国科学院化学研究所中国科学院工程塑料重点实验室;中国科学院大学;
  • 出版日期:2018-12-24 12:18
  • 出版单位:高分子学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金(基金号21873109);; 国家重点研发计划政府间重点专项(项目号2017YFE0117800);; 中国科学院青年创新促进会(项目号2015026)资助
  • 语种:中文;
  • 页:GFXB201903009
  • 页数:10
  • CN:03
  • ISSN:11-1857/O6
  • 分类号:91-100
摘要
利用X射线极图法研究了等规聚丙烯(i PP)在阳极氧化铝模板(AAO)中的取向结构.实验结果表明,i PP在AAO内主要的取向模式为倒易空间的b*轴或a*轴平行于AAO的孔轴(~).这2种取向模式的比例同结晶条件有关:随着降温速率增加,高分子的整体取向逐渐变弱,但是a*║~的取向变化更明显.在液氮淬冷的条件下,i PP几乎不能结晶.实验结果同文献所报道的"动力学选择机理"不一致.借助简化的"一维格子"模型,模拟了成核速率、生长速率对整体取向的影响.结果表明,高分子在受限空间中的取向存在3个区域:成核速率极高而生长速率极低时,晶体生长尺寸很小,样品表现为各向同性;中间区域各晶面的相对生长速率决定了最终取向结构;成核速率极低而生长速率极高时,纳米孔中高分子一旦成核,晶体就会很快生长至充满整个孔道,所有(hk0)晶面均可生长.综合实验和模拟结果,提出了高分子受限在一维纳米孔道中的晶体取向模型.
        Anodic aluminum oxide(AAO) templates with parallel aligned nanochannels provide an ideal scenario for constructing the one-dimensional(1 D) nanoconfinement environment. In recent years, while many studies have been conducted on the orientation of crystalline polymers in AAO, a universal model is still absent for explaining the diverse or even contradictory observations in different polymer systems and further understanding the complicated evolution of orientation upon changing the crystallization conditions. In this work,the texture of isotactic polypropylene(i PP) in AAO template was studied by X-ray pole figure analysis, with two major modes of uniaxial orientation, b* or a*║~(pore axis), observed for i PP. Furthermore, the relative ratio of these two orientation modes varied with the crystallization conditions, indicating that their temperature dependence differed from each other. Specifically, the orientation degree of both b* and a*║~ gradually decreased with raised cooling rate, and the changes in the latter were more pronounced. Moreover, <110>*║~ orientation emerged with the increase of cooling rate, and the relative population of this orientation was also enhanced.Samples would be amorphous if quenched directly into liquid nitrogen. As the previous model apparently failed to explain these observations, a simple "1 D lattice " model was proposed herein to numerically simulate the crystallization of polymer within 1 D channel. In particular, it enabled to explore the influences of nucleation rate and crystal growth rate at a wide range of scales. According to the model established, orientation behavior of polymer in 1 D nanocylinders can be divided into three zones. High nucleation rate combined with low growth rate will result in nearly isotropic structure, which corresponds to the crystallization under very large supercooling. The intermediate zone holds moderate nucleation rate and growth rate, orientation structure in which follows the rule of "direction of the fastest growth aligns with the channel axis". When the nucleation rate is very low and the growth rate is high, any(hk0) will grow freely to fill the whole channel under static conditions, which is the scenario described earlier by the "kinetic selection " model. In summary, comparison of experimental and simulation results proved that the complete model developed in this study can better explain those diverse observations recorded in literature.
引文
1 Samanta P,Liu C L,Nandan B,Chen H L.Chapter 13-Crystallization of Polymers in Confined Space.In:Thomas S,Gowd E B,Kalarikkal N,eds.Crystallization in Multiphase Polymer Systems.Kidlington Oxford(UK):Elsevier,2018.367-431
    2 Mary Michell R,Blaszczyk-Lezak I,Mijangos C,Mueller A J.J Polym Sci,Part B:Polym Phys,2014,52(18):1179-1194
    3 Müller A J,Balsamo V,Arnal M L.Adv Polym Sci,2005,190:1-63
    4 Müller M L,Arnal M L,Lorenzo A T.Crystallization in Nano-Confined Polymeric Systems.In:Piorkowska E,Rutledge G C,eds.Handbook of Polymer Crystallization.Hoboken,New Jersey(USA):John Wiley and Sons,2013.347-378
    5 Michell R M,Müller A J.Prog Polym Sci,2016,54-55:183-213
    6 Cheng J F,Pu H T.Chinese J Polym Sci,2016,34(12):1411-1422
    7 Zhang Lianbin(张连斌),Wang Ke(王珂),Zhu Jintao(朱锦涛).Acta Polymerica Sinica(高分子学报),2017,(8):1261-1276
    8 Vanroy B,Wubbenhorst M,Napolitano S.ACS Macro Lett,2013,2(2):168-172
    9 Rittigstein P,Priestley R D,Broadbelt L J,Torkelson J M.Nat Mater,2007,6(4):278-282
    10 Huang P,Zhu L,Cheng S Z D,Ge Q,Quirk R P,Thomas E L,Lotz B,Hsiao B S,Liu L Z,Yeh F J.Macromolecules,2001,34(19):6649-6657
    11 Huang P,Guo Y,Quirk R P,Ruan J J,Lotz B,Thomas E L,Hsiao B S,Avila-Orta C A,Sics I,Cheng S Z D.Polymer,2006,47(15):5457-5466
    12 Nakagawa S,Kadena K I,Ishizone T,Nojima S,Shimizu T,Yamaguchi K,Nakahama S.Macromolecules,2012,45(4):1892-1900
    13 Barroso-Bujans F,Palomino P,Fernandez-Alonso F,Rudic S,Alegria A,Colmenero J,Enciso E.Macromolecules,2014,47(24):8729-8737
    14 Jiang S C,Qiao C D,Tian S Z,Ji X L,An L J,Jiang B Z.Polymer,2001,42(13):5755-5761
    15 Jiang S,Yu D,Ji X,An L,Jiang B.Polymer,2000,41(6):2041-2046
    16 Zhao W W,Su Y L,Gao X,Qian Q Y,Chen X,Wittenbrink R,Wang D J.J Polym Sci,Part B:Polym Phys,2017,55(6):498-505
    17 Zhao W W,Su Y L,Muller A J,Gao X,Wang D J.J Polym Sci,Part B:Polym Phys,2017,55(21):1608-1616
    18 Zhao W W,Su Y L,Wang D J.Mod Phys Lett B,2017,31(23):1730003
    19 Pan L,Tao Q H,Zhang S D,Wang S S,Zhang J,Wang S H,Wang Z Y,Zhang Z P.Sol Energy Mater Sol Cells,2012,98:66-70
    20 Su Y L,Liu G M,Xie B Q,Fu D S,Wang D J.Acc Chem Res,2014,47(1):192-201
    21 Masuda H,Fukuda K.Science,1995,268(5216):1466-1468
    22 Michell R M,Blaszczyk-Lezak I,Mijangos C,Müller A J.Polymer,2013,54(16):4059-4077
    23 Wu H,Higaki Y,Takahara A.Prog Polym Sci,2018,77:95-117
    24 Schultz J M.Macromolecules,1996,29(8):3022-3024
    25 Guan Y,Liu G M,Gao P Y,Li L,Ding G Q,Wang D J.ACS Macro Lett,2013,2(3):181-184
    26 Woo E,Huh J,Jeong Y G,Shin K.Phys Rev Lett,2007,98(13):136103
    27 Wu H,Wang W,Huang Y,Wang C,So Z H.Macromolecules,2008,41(20):7755-7758
    28 Duran H,Steinhart M,Butt H J,Floudas G.Nano Lett,2011,11(4):1671-1675
    29 Reid D K,Ehlinger B A,Shao L,Lutkenhaus J L.J Polym Sci,Part B:Polym Phys,2014,52(21):1412-1419
    30 Suzuki Y,Duran H,Akram W,Steinhart M,Floudas G,Butt H J.Soft Matter,2013,9(38):9189-9198
    31 Suzuki Y,Duran H,Steinhart M,Butt H J,Floudas G.Macromolecules,2014,47(5):1793-1800
    32 Shi G Y,Liu G M,Su C,Chen H M,Chen Y,Su Y L,Muller A J,Wang D J.Macromolecules,2017,50(22):9015-9023
    33 Steinhart M,G?ring P,Dernaika H,Prabhukaran M,G?sele U,Hempel E,Thurn-Albrecht T.Phys Rev Lett,2006,97(2):027801
    34 Loo Y L,Register R A.Crystallization within Block Copolymer Mesophases.In:Hamley I W,eds.Developments in Block Copolymer Science and Technology.Chichester,West Sussex(UK):John Wiley&Sons,2004.213-243
    35 Ma Y,Hu W,Hobbs J,Reiter G.Soft Matter,2008,4(3):540-543
    36 Michell R M,Lorenzo A T,Muller A J,Lin M C,Chen H L,Blaszczyk-Lezak I,Martin J,Mijangos C.Macromolecules,2012,45(3):1517-1528
    37 Liu C L,Chen H L.Macromolecules,2017,50(2):631-641
    38 Liu C L,Chen H L.Soft Matter,2018,14(26):5461-5468
    39 Maiz J,Schafer H,Rengarajan G T,Hartmann-Azanza B,Eickmeier H,Haase M,Mijangos C,Steinhart M.Macromolecules,2013,46(2):403-412
    40 Shin K,Woo E,Jeong Y G,Kim C,Huh J,Kim K W.Macromolecules,2007,40(18):6617-6623
    41 Wu Hui(吴慧),Wang Wei(王巍),Su Zhaohui(苏朝晖).Acta Polymerica Sinica(高分子学报),2009,(5):425-429
    42 Shingne N,Geuss M,Thurn-Albrecht T,Schmidt H W,Mijangos C,Steinhart M,Martin J.J Phys Chem B,2017,121(32):7723-7728
    43 Martín J,Iturrospe A,Cavallaro A,Arbe A,Stingelin N,Ezquerra T A,Mijangos C,Nogales A.Chem Mater,2017,29(8):3515-3525
    44 Li L,Liu J,Qin L,Zhang C,Sha Y,Jiang J,Wang X,Chen W,Xue G,Zhou D.Polymer,2017,110:273-283
    45 Su C,Shi G Y,Li X L,Zhang X Q,Müller A J,Wang D J,Liu,G M.Macromolecules,DOI:10.1021/acs.macromol.8b01801
    46 Natta G,Corradini P.Il Nuovo Cimento(1955-1965),1960,15(1):40-51
    47 Lovinger A J.J Polym Sci,Part B:Polym Phys,1983,21(1):97-110
    48 Yamada K,Kajioka H,Nozaki K,Toda A.J Macromol Sci Part B-Phys,2011,50(2):236-247
    49 Zhang B,Chen J,Liu B,Wang B,Shen C,Reiter R,Chen J,Reiter G.Macromolecules,2017,50(16):6210-6217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700