γ-Fe_2O_3/C复合纳米材料的制备及其储钠性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of γ-Fe_2O_3/C composite nanomaterials and its sodium storage properties
  • 作者:吴晓雷 ; 刘生满 ; 徐俊敏 ; 程丙良
  • 英文作者:WU Xiaolei;LIU Shengman;XU Junmin;CHENG Bingliang;College of Science,Zhongyuan University of Technology;School of Physics and Engineering,Zhengzhou University;
  • 关键词:氧化铁 ; 碳包覆 ; 储钠 ; MOFs ; 纳米化
  • 英文关键词:Iron oxide;;Carbon coating;;Sodium storage;;MOFs;;Nanocrystallization
  • 中文刊名:ZZZA
  • 英文刊名:Journal of Zhongyuan University of Technology
  • 机构:中原工学院理学院;郑州大学物理学院;
  • 出版日期:2019-02-25
  • 出版单位:中原工学院学报
  • 年:2019
  • 期:v.30;No.150
  • 基金:国家自然科学基金项目(51802288);; 河南省高等学校重点科研项目(18A140008)
  • 语种:中文;
  • 页:ZZZA201901004
  • 页数:8
  • CN:01
  • ISSN:41-1341/T
  • 分类号:33-40
摘要
环境问题和能源问题使当下社会对高效友好的储能器件的研究越来越紧迫。储量丰富且安全无毒的钠离子电池引起人们的注意。金属氧化物因其较高的理论容量、丰富的储存和低廉的成本而成为应用前景极广的钠离子电池负极材料。通过液相合成法制备出对苯二甲酸铁前驱体,结合后续的真空退火成功地制备出纳米级γ-Fe_2O_3/C。用制备的γ-Fe_2O_3/C作钠离子电池电极材料时,该电极表现出良好的电化学性能,在电流密度为50 mA/g时,经过100次充放电循环后可逆容量高达277.67 mAh/g,容量保持率为74.63%;在经过高倍率放电-充电循环,电流密度再次降到50 mA/g时,可逆容量可恢复到305.54 mAh/g,容量保持率为93.77%,库伦效率为99.6%。说明在γ-Fe_2O_3作为钠离子电池负极电极材料时,通过碳材料的包覆以及纳米化可以优化其循环性能,为后续研究电极材料的合成方法和储钠性能提供可行的途径。
        Environmental and energy issues have made it increasingly urgent for the society to study efficient and friendly energy storage devices. A well-stocked, non-toxic and safe sodium ion battery draws people's attention. Metal oxides have become the anode materials for sodium ion battery with a wide range of applications due to their high theoretical energy, abundant storage and low cost. In this paper, the precursor iron terephthalate was prepared by simple liquid phase synthesis method, and the nano-scale γ-Fe_2O_3/C was prepared by simple vacuum annealing. When the prepared γ-Fe_2O_3/C is used as the electrode material of sodium ion battery, the electrode exhibits good electrochemical performance. When the current density is 50 mA/g, the reversible capacity is up to 277.67 mAh/g after 100 charge and discharge cycles and the capacity retention rate is 74.63%; after the high-rate discharge-charge cycle, the current density is again reduced to 50 mA/g, the reversible capacity can still recover to 305.54 mAh/g, and the capacity retention rate is 93.77%, the Coulomb efficiency is 99.6 %.Whenγ-Fe_2O_3/C is used as the negative electrode material of sodium ion battery, the cycle performance can be optimized by coating and nanocrystallization of carbon material, and it provides a feasible way for the subsequent research on the synthesis method and sodium storage performance of electrode materials.
引文
[1] 杨德志.高性能钠离子电池正极材料研究[D].上海:上海交通大学,2016.
    [2] 张志薇.二次电池凝胶负极材料的制备及其电化学性能[D].山东:山东大学,2017.
    [3] 张文亮,丘明,来小康.储能技术在电力系统中的应用[J].电网技术,2008,32(7):1-9.
    [4] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861):359-367.
    [5] SCROSATI B. Recent advances in lithium ion battery materials[J]. Electrochimica Acta, 2000,45(15):2461-2466.
    [6] MALINI R, UMA U, SHEELA T, et al. Conversion reactions: a new pathway to realise energy in lithium-ion battery-review[J]. Ionics, 2009,15(3):301-307.
    [7] ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review[J]. Energy & Environmental Science, 2011, 4(9):3243-3262.
    [8] VIKSTR?M H, DAVIDSSON S, H??K M. Lithium availability and future production outlooks[J]. Applied Energy, 2013, 110(110):252-266.
    [9] GRUBER P W, MEDINA P A, KEOLEIAN G A, et al. Global Lithium Availability[J]. Journal of Industrial Ecology, 2011, 15(5):760-775.
    [10] VIKSTR?M H, DAVIDSSON S, H??K M. Lithium availability and future production outlooks[J]. Applied Energy, 2013, 110(110):252-266.
    [11] DAHBI M, YABUUCHI N, KUBOTA K, et al. Negative electrodes for Na-ion batteries [J]. Physical Chemistry Chemical Physics, 2014, 16(29):15007-15028.
    [12] KIM H, KIM H, DING Z, et al. Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(19):1-38.
    [13] DELMAS C, BRACONNIER J J, FOUASSIER C, et al. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ionics,1981,3-4(none):165-169.
    [14] PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3):5884-5901.
    [15] WESSELLS C D, HUGGINS R A, CUI Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power[J]. Nature Communications, 2011, 2:[s.n.].
    [16] ZHOU D, PEER M, YANG Z, et a1. Long cycle life microporous pherical carbon anodes for sodium-ion batteries derived from furfuryl alcohol[J]. Journal of Materials Chemistry A, 2016, 4(17):1-3.
    [17] DATTA D, LI J, SHENOY V B. Defective graphene as a high-capacity anode material for Na and Ca-ion batteries[J]. ACS Applied Materials & Interfaces, 2014,6(3):1788-1795.
    [18] PRAMUDITA J C, PONTIROLI D, MAGNANI G, et al. Graphene and selected derivatives as negative electrodes in sodium and lithium-ion batteries[J]. ChemElectroChem,2015,2(4):600-610.
    [19] KANG Y J, JUNG S C, CHOI J W, et al. Important role of functional groups for sodium ion intercalation inexpanded graphite[J]. Chemistry of Materials,15,27(15):5402-5406.
    [20] DAVID L, SINGH G. Reduced graphene oxide paper electrode:opposing effect of thermal annealing on Li and Na cyclability[J]. The Journal of Physical Chemistry C, 2014, 118(49): 28401-28408.
    [21] XU B, ZHENG D, JIA M, et al. Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors[J]. Electrochimica Acta, 2013, 98: 176-182.
    [22] DOUGLAS A, CARTER R, OAKES L, et al. Ultrafine iron pyrite (Fe2O3) nanocrystals improve sodium sulfur and lithium sulfur conversion reactions for efficient batteries[J]. ACS Nano, 2015, 9: 11156-11165.
    [23] LI D, ZHOU J, CHEN X, et al. Amorphous Fe2O3/Graphene composite nanosheets with enhanced electrochemical performance for sodium-ion battery[J]. Acs Applied Mater Interfaces, 2016, 8(45): 30899-30907.
    [24] ZHANG N, HAN X, LIU Y, et al. 3D Porousγ-Fe2O3@C nanocomposite as high-performance anode material of Na-ion batteries[J]. Advanced Energy Materials, 2014, 5(5):[s.n.].
    [25] 李婷,龙志辉,张道洪.Fe2O3/rGO纳米复合物的制备及其储锂和储钠性能[J].物理化学学报,2016(2):573-580.
    [26] ZHANG L, WU H B, MADHAVI S, et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties[J]. Journal of the American Chemical Society, 2012, 134(42): 17388-17391.
    [27] WANG B, CHEN S J, WU H B, et al. Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties[J]. Journal of the American Chemical Society, 2011, 133(43): 17146-17148.
    [28] JIANG Y, HU M, DAN Z, et al. Transition metal oxides for high performance sodium ion battery anodes[J]. Nano Energy, 2014, 5(2): 60-66.
    [29] 刘永畅,陈程成,张宁,等.钠离子电池关键材料研究及应用进展[J].电化学, 2016(5):437-452.
    [30] ZHU Z Q, WANG S W, JING D, et al. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries[J]. Nano Letters, 2014, 14(1): 153-157.
    [31] 王泽敏,刘勇,戢明,等.γ-Fe2O3纳米粉末的光谱吸收特性研究[J].功能材料,2006,37(2): 284-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700