Preparation of core-shell magnetic Fe_3O_4@SiO_2-dithiocarbamate nanoparticle and its application for the Ni~(2+), Cu~(2+) removal
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of core-shell magnetic Fe_3O_4@SiO_2-dithiocarbamate nanoparticle and its application for the Ni~(2+), Cu~(2+) removal
  • 作者:Yimin ; Dai ; Lanli ; Niu ; Jiaqi ; Zou ; Tianxiao ; Chen ; Hui ; Liu ; Yi ; Zhou
  • 英文作者:Yimin Dai;Lanli Niu;Jiaqi Zou;Tianxiao Chen;Hui Liu;Yi Zhou;School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology;
  • 英文关键词:Core-shell;;Magnetic nanoparticle;;Dithiocarbamate;;Adsorption;;Heavy metals removal
  • 中文刊名:FXKB
  • 英文刊名:中国化学快报(英文版)
  • 机构:School of Chemistry and Biological Engineering, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology;
  • 出版日期:2018-06-15
  • 出版单位:Chinese Chemical Letters
  • 年:2018
  • 期:v.29
  • 基金:the financial support provided by the National Natural Science Foundation of China (No. 21671026);; the Science and Technology Key Project of Hunan Province (No. 2015SK20823);; Scientific Research Key Fund of Hunan Provincial Education Department (No. 15A001);; the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation (No. 2017CL06)
  • 语种:英文;
  • 页:FXKB201806036
  • 页数:5
  • CN:06
  • ISSN:11-2710/O6
  • 分类号:183-187
摘要
A novel magnetic nanoparticles-based dithiocarbamate absorbent(Fe_3O_4@SiO_2-DTC) with core-shell structure was synthesized under mild conditions and used in aqueous solution Ni~(2+) and Cu~(2+) ions treatment. The structure, morphology and magnetic properties of the adsorbent were characterized by Xray diffraction(XRD), fourier transformed infrared spectroscopy(FTIR), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and vibrating sample magnetometer(VSM).Fe_3O_4@SiO_2-DTC exhibited a typical superparamagnetic with a saturation magnetization value of52.7 emu/g, which could be rapidly separated from aqueous solution under external magnetic field. We investigated the effects of solution p H, adsorption time, and the initial concentration of heavy metal ions on the adsorption of Ni~(2+) and Cu~(2+). The adsorption equilibrium times of Ni~(2+)and Cu~(2+) on Fe3 O_4@SiO_2-DTC were reached at 15 min and 90 min, respectively. The adsorption kinetic data were fitted to the pseudosecond-order model, and the adsorption data were consistent with the Frenudlich isotherm model. When the initial concentration of heavy metal ions was 250 mg/L, the maximum adsorption capacity of Ni~(2+) and Cu~(2+) at room temperature was 235.23 mg/g and 230.49 mg/g, respectively. In addition, we discussed the plausible adsorption mechanism. The results indicated that the adsorption was mainly dominated by chelation.
        A novel magnetic nanoparticles-based dithiocarbamate absorbent(Fe_3O_4@SiO_2-DTC) with core-shell structure was synthesized under mild conditions and used in aqueous solution Ni~(2+) and Cu~(2+) ions treatment. The structure, morphology and magnetic properties of the adsorbent were characterized by Xray diffraction(XRD), fourier transformed infrared spectroscopy(FTIR), scanning electron microscopy(SEM), transmission electron microscopy(TEM), and vibrating sample magnetometer(VSM).Fe_3O_4@SiO_2-DTC exhibited a typical superparamagnetic with a saturation magnetization value of52.7 emu/g, which could be rapidly separated from aqueous solution under external magnetic field. We investigated the effects of solution p H, adsorption time, and the initial concentration of heavy metal ions on the adsorption of Ni~(2+) and Cu~(2+). The adsorption equilibrium times of Ni~(2+)and Cu~(2+) on Fe3 O_4@SiO_2-DTC were reached at 15 min and 90 min, respectively. The adsorption kinetic data were fitted to the pseudosecond-order model, and the adsorption data were consistent with the Frenudlich isotherm model. When the initial concentration of heavy metal ions was 250 mg/L, the maximum adsorption capacity of Ni~(2+) and Cu~(2+) at room temperature was 235.23 mg/g and 230.49 mg/g, respectively. In addition, we discussed the plausible adsorption mechanism. The results indicated that the adsorption was mainly dominated by chelation.
引文
[1]L.Xu,J.N.Wang,Y.Meng,A.M.Li,Chin.Chem.Lett.23(2012)105–108.
    [2]P.Panneerselvam,N.Morad,K.A.Tan,J.Hazard.Mater.186(2011)160–168.
    [3]A.Z.M.Badruddoza,Z.B.Z.Shawon,W.J.D.Tay,K.Hidajat,M.S.Uddin,Carbohyd.Polym.91(2013)322–332.
    [4]F.Ge,M.M.Li,H.Ye,B.X.Zhao,J.Hazard.Mater.211(2012)366–372.
    [5]Y.Liu,M.Chen,H.Yongmei,J.Chem.Eng.218(2013)46–54.
    [6]X.Zhang,Q.Huang,M.Liu,et al.,Appl.Surf.Sci.343(2015)19–27.
    [7]S.Y.Zhu,H.Y.Guo,F.F.Yang,Z.S.Wang,Chin.Chem.Lett.26(2015)1091–1095.
    [8]C.E.Barrera-Diaz,V.Lugo-Lugo,B.Bilyeu,J.Hazard.Mater.223(2012)1–12.
    [9]M.Bhaumik,A.Maity,V.V.Srinivasu,M.S.Onyango,J.Hazard.Mater.190(2011)381–390.
    [10]H.Zhang,F.Huang,D.L.Liu,P.Shi,Chin.Chem.Lett.26(2015)1137–1143.
    [11]J.Zhu,S.A.Baig,T.Sheng,et al.,J.Hazard.Mater.286(2015)220–228.
    [12]K.Zargoosh,H.Abedini,A.Abdolmaleki,M.R.Molavian,Ind.Eng.Chem.Res.52(2013)14944–14954.
    [13]M.Hassan,E.Haque,K.R.Reddy,et al.,Nanoscale 6(2014)11988–11994.
    [14]H.Karami,[23_TD$IF]J.Chem.Eng.219(2013)209–216.
    [15]T.Wang,L.Zhang,H.Wang,et al.,ACS Appl.Mater.Interfaces 5(2013)12449–12459.
    [16]T.Lü,S.Zhang,D.Qi,et al.,Appl.Surf.Sci.396(2017)1604–1612.
    [17]G.Yang,L.Tang,X.Lei,et al.,Appl.Surf.Sci.292(2014)710–716.
    [18]J.F.Liu,Z.S.Zhao,G.B.Jiang,Environ.Sci.Technol.42(2008)6949–6954.
    [19]K.R.Reddy,K.P.Lee,A.G.Iyengar,J.Appl.Polym.Sci.104(2007)4127–4134.
    [20]K.R.Reddy,K.P.Lee,A.I.Gopalan,Colloid.Surface A 320(2008)49–56.
    [21]C.Hui,C.Shen,J.Tian,et al.,Nanoscale 3(2011)701–705.
    [22]H.L.Ding,Y.X.Zhang,S.Wang,et al.,Chem.Mater.24(2012)4572–4580.
    [23]J.Zou,Y.G.Peng,Y.Y.Tang,RSC Adv.4(2014)9693–9700.
    [24]F.Zhang,Y.Shi,Z.Zhao,et al.,J.Mater.Sci.49(2014)3478–3483.
    [25]W.Zhao,B.Cui,H.Peng,H.Qiu,Y.Wang,J.Phys.Chem.C 119(2015)4379–4386.
    [26]K.R.Reddy,V.G.Gomes,M.Hassan,Mater.Res.Exp.1(2014)015012.
    [27]Y.P.Zhang,S.H.Lee,K.R.Reddy,A.I.Gopalan,K.P.Lee,J.Appl.Polym.Sci.104(2007)2743–2750.
    [28]L.Bai,H.Hua,W.Fu,et al.,J.Hazard.Mater.195(2011)261–275.
    [29]A.Farrukh,A.Akram,A.Ghaffar,et al.,ACS Appl.Mater.Interfaces 5(2013)3784–3793.
    [30]D.J.Halls,Microchim.Acta 57(1969)62–77.
    [31]N.Azizi,E.Gholibeglo,[25_TD$IF]1RSC Adv.2(2012)7413–7416.
    [32]A.Hulanicki,Talanta 14(1967)1371–1392.
    [33]Z.Li,J.Ind.Eng.Chem.20(2014)586–590.
    [34]L.Liu,J.Wu,X.Li,Y.Ling,Sep.Purif.Technol.103(2013)92–100.
    [35]P.Yan,M.Ye,S.Sun,et al.,J.Clean.Prod.122(2016)308–314.
    [36]K.R.Reddy,K.V.Karthik,S.B.Prasad,et al.,Polyhedron 120(2016)169–174.
    [37]L.Zhou,H.Deng,J.Wan,J.Shi,T.Su,Appl.Surf.Sci.283(2013)1024–1031.
    [38]A.M.Showkat,Y.P.Zhang,M.S.Kim,et al.,Bull.Korean Chem.Soc.28(2007)1985–1992.
    [39]Y.S.Ho,G.Mc Kay,Process Biochem.34(1999)451–465.
    [40]B.Xiang,W.Fan,X.Yi,et al.,Carbohyd.Polym.136(2016)30–37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700