几个杂交水稻品种蜡熟期剑叶光合特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on photosynthetic characteristics of flag leaves of several hybrid rice cultivars in dough stage
  • 作者:叶子飘 ; 尹建华 ; 陈先茂 ; 安婷 ; 段世华
  • 英文作者:YE Zipiao;YIN Jianhua;CHEN Xianmao;AN Ting;DUAN Shihua;Maths & Physics College, Jinggangshan University;Rice Research Institute, Jiangxi Academy of Agricultural Sciences;Soil Fertilizer and Environmental Resources Institute, Jiangxi Academy of Agricultural Sciences;School of Life Sciences, Jinggangshan University;
  • 关键词:水稻 ; 光合作用 ; 光合参数 ; 最小平均寿命 ; 有效光能吸收截面
  • 英文关键词:rice;;photosynthesis;;photosynthetic parameter;;minimum average life-time;;effective absorption cross-section
  • 中文刊名:ZJNB
  • 英文刊名:Acta Agriculturae Zhejiangensis
  • 机构:井冈山大学数理学院;江西省农业科学院水稻研究所;江西省农业科学院土壤肥料与资源环境研究所;井冈山大学生命科学学院;
  • 出版日期:2019-03-25
  • 出版单位:浙江农业学报
  • 年:2019
  • 期:v.31;No.196
  • 基金:国家自然科学基金(31560069);; 江西省优势科技创新团队建设计划(20142BCB24010);; 江西省现代农业科研协同创新项目(JXXTCX2015001-005);; 国家重点研发计划(2016YFD0300108)
  • 语种:中文;
  • 页:ZJNB201903002
  • 页数:10
  • CN:03
  • ISSN:33-1151/S
  • 分类号:16-25
摘要
利用LI-6400便携式光合作用测量系统研究了杂交水稻深95优1326、五丰优1326和赣香优1326及保持系JR1326蜡熟期剑叶的光合特性。结果表明:五丰优1326的叶绿素含量比深95优1326和赣香优1326分别高出33.41%和16.83%。五丰优1326和深95优1326之间的最大电子传递速率或最大净光合速率不存在显著差异(P>0.05),但这两种水稻与赣香优1326之间差异显著(P<0.05)。五丰优1326水稻叶片捕光色素分子的最小平均寿命比深95优1326和赣香优1326多14.89%;深95优1326捕光色素分子的本征截面比五丰优1326多28.71%;深95优1326的瞬时水分利用效率比五丰优1326和赣香优1326分别多34.99%和16.71%。此外,本研究结果揭示了本试验所用水稻品种的光合能力不仅与叶绿素含量有关,还与本征光能吸收截面、处于最低激发态的最小平均寿命等有关。这些因素的共同作用决定了水稻的最大电子传递速率和最大净光合速率。因此,选育的水稻品种应具有高的本征光能吸收截面、短的处于最低激发态的最小平均寿命和较高的叶绿素含量等特性。
        In order to investigate the photosynthetic characteristics of flag leaves of hybrid rice in dough stage,the gas exchange data of four hybrid rice cultivars( Shen95 you1326,Wufengyou1326,Ganxiangyou1326 and restorer line JR1326) were performed by LI-6400 portable photosynthesis measurement system. The results showed that the chlorophyll content of Wufengyou1326 was 33. 41% and 16. 83% higher than that of Shen95 you1326 and Ganxiangyou1326. There was no difference between the maximum electron transport rate of Wufengyou1326 and Shen95 you1326 or the maximum net photosynthetic rate of Wufengyou1326 and Shen95 you1326( P > 0. 05). However,there was a significant difference between the two rice cultivars and Ganxiangyou1326 in the maximum electron transport rate and the maximum net photosynthetic rate( P < 0. 05). The minimum average life-time of the Wufengyou1326 of pigment molecules in the excited state was 14. 89% longer than Shen95 you1326 and Ganxiangyou1326,and the intrinsic cross-section of pigment molecules of Shen95 you1326 was 28. 71% higher than Wufengyou 1326,and the instantaneous water-use efficiency of Shenyou1326 was 34. 99% and 16. 71% more than that of Wufengyou1326 and Ganxiangyou1326. The results revealed that photosynthetic capacity of rice cultivars was not only related to chlorophyll content,but also to intrinsic absorption cross-section and minimum average life time in the lowest excited state. The interaction of these factors determined the maximum electron transport rate and the maximum net photosynthetic rate of rice. Therefore,the selected rice cultivars should have some special characteristics such as higher intrinsic absorption cross-section,shorter minimum average life time in the lowest excitation state and higher chlorophyll content.
引文
[1] 朱德峰, 程式华, 张玉屏, 等. 全球水稻生产现状与制约因素分析[J]. 中国农业科学, 2010, 43(3): 474-479.ZHU D F, CHENG S H, ZHANG Y P, et al. Analysis of status and constraints of rice production in the world[J]. Scientia Agricultura Sinica, 2010, 43(3): 474-479.(in Chinese with English abstract)
    [2] 吕川根, 李霞, 陈国祥. 超级杂交稻两优培九高产的光合特性及其生理基础[J]. 中国农业科学, 2017, 50 (21): 4055-4070.LYU C G, LI X, CHEN G X. Photosynthetic characteristics and its physiological basis of super high-yielding hybrid rice liangyoupeijiu[J]. Scientia Agricultura Sinica, 2017, 50(21): 4055-4070. (in Chinese with English abstract)
    [3] 娄成后, 王学臣. 作物产量形成的生理学基础[M]. 北京: 中国农业出版社, 2001: 52-63.
    [4] 叶子飘, 闫小红, 段世华. 高产水稻剑叶的叶绿素含量、捕光色素分子的内禀特性与饱和光强关系的研究[J]. 井冈山大学学报(自然科学版), 2015, 36(2): 25-32+53.YE Z P, YAN X H, DUAN S H. Investigation on the relationship between saturation irradiance and chlorophyll contents of leaves and intrinsic characteristics of light-harvesting pigment molecules in high-yielding rice[J]. Journal of Jinggangshan University (Natural Science), 2015, 36(2): 25-32+53. (in Chinese with English abstract)
    [5] 顾骏飞, 周振翔, 李志康, 等. 水稻低叶绿素含量突变对光合作用及产量的影响[J]. 作物学报, 2016, 42(4): 551-560. GU J F, ZHOU Z X, LI Z K, et al. Effects of the mutant with low chlorophyII content on photosynthesis and yield in rice[J]. Acta Agronomica Sinica, 2016, 42(4): 551-560.(in Chinese with English abstract)
    [6] 孟军, 陈温福, 徐正进, 等. 水稻剑叶净光合速率与叶绿素含量的研究初报[J]. 沈阳农业大学学报, 2001, 32 (4): 247-249.MENG J, CHEN W F, XU Z J, et al. Study on photosynthetic rate and chlorophyII content[J]. Journal of Agricultural University, 2001, 32(4): 247-249.(in Chinese with English abstract)
    [7] 谭长乐, 张洪熙, 戴正元, 等. 优质籼稻扬稻6号库、源、流特性研究[J]. 中国农业科学, 2003, 36(1): 26-30.TAN C L, ZHANG H X, DAI Z Y, et al. Characteristics of sink, source and flow in good quality indica rice Yangdao6[J]. Scientia Agricultura Sinica, 2003, 36(1): 26-30. (in Chinese with English abstract)
    [8] 许大全. 光合速率、光合效率与作物产量[J]. 生物学通报, 1999, 34(8): 8-10.XU D Q. Photosynthetic rate, photosynthetic efficiency and crop yield[J]. Bulletin of Biology, 1999, 34(8): 8-10.(in Chinese)
    [9] 刘晓晴. 丰两优系列高产优质杂交水稻品种生育后期光合特性及产量研究[J]. 安徽农业科学, 2011, 39(29): 17819-17821.LIU X Q. Study on the photosynthetic characteristics of high-yield and good-quality hybrid rice varieties of fenliangyou series during the late growth stage and its yield[J]. Journal of Anhui Agricultural Science, 2011, 39(29): 17819-17821.(in Chinese with English abstract)
    [10] 张笑寒, 赵德刚, 何友勋, 等. 杂交水稻毕粳优210及其亲本光合特性研究[J]. 云南农业大学学报(自然科学), 2016, 31 (3): 381-386.ZHANG X H, ZHAO D G, HE Y X, et al. Study on photosynthetic characteristics of hybrid rice Bijingyou210 and its parents[J]. Journal of Yunnan Agricultural University, 2016, 31(3):381-386.(in Chinese with English abstract)
    [11] ZHU X, LONG S P, ORT D R. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?[J]. Current Opinion in Biotechnology, 2008, 19: 153-159.
    [12] ORT D R, MERCHANT S S, ALRIC J, et al. Redesigning photosynthesis to sustainably meet global food and bioenergy demand[J]. Proceedings of the National Academy of Sciences USA, 2015, 112: 8529-8536.
    [13] YE Z P, SUGGETT D J, ROBAKOWSKI P, et al. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species[J]. New Phytologist, 2013, 199: 110-120.
    [14] 叶子飘, 杨小龙, 康华靖. C3和C4植物光能利用效率和水分利用效率的比较研究[J]. 浙江农业学报, 2016, 28(11): 1867-1873.YE Z P, YANG X L, KANG H J. Comparison of light-use and water-use efficiency for C3 and C4 species[J]. Acta Agriculturae Zhejiangensis, 2016, 28(11): 1867-1873.(in Chinese with English abstract)
    [15] ARON D I. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris [J]. Plant Physiology, 1949, 24 (1): 1.
    [16] WHITE A J, CRITCHLEY C. Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus[J]. Photosynthesis Research, 1999, 59: 63-72.
    [17] 薛娴, 许会敏, 吴鸿洋, 等. 植物光合作用循环电子传递的研究进展[J]. 植物生理学报 2017, 53 (2): 145-158. XUE X, XU H M, WU H Y, et al. Research progress of cyclic electron transport in plant photosynthesis[J]. Plant Physiology Journal, 2017, 53(2): 145-158.(in Chinese with English abstract)
    [18] YAMORI W, SHIKANAI T. Physiological functions of cyclic electron transport around photosystem Ⅰ in sustaining photosynthesis and plant growth[J]. Annual Review of Plant Biology, 2016, 67: 81-106.
    [19] JOHNSON X, STEINBECK J, DENT R M, et al. Proton gradient regulation 5-mediated cyclic electron flow under ATP-or redox-limited conditions: a study of ΔATpase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii[J]. Plant Physiology, 2014, 165 (1): 438-452.
    [20] KUHLBRANDT W, WANG D N, FUJIYOSHI Y. Atomic model of plant light-harvesting complex by electron crystallography[J]. Nature, 1994, 367(6464):614-621.
    [21] 叶子飘, 胡文海, 肖宜安,等. 光合电子流对光响应的机理模型及其应用[J]. 植物生态学报, 2014, 38 (11): 1241-1249.YE Z P, HU W H, XIAO Y A, et al. A mechanistic model of light-response of photosynthetic electron flow and its application[J]. Chinese Journal of Plant Ecology, 2014, 38(11):1241-1249.(in Chinese with English abstract)
    [22] TAKAHASHI S, BADGER M. Photoprotection in plants: a new light on photosystem Ⅱ damage[J]. Trends in Plant Sciences, 2011, 16(1): 53-59.
    [23] NIYOGI K K, TRUONG T B. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis[J]. Current Opinion in Plant Biology, 2013, 16(3): 307-314.
    [24] CRUZ J A, AVENSON T J, KANAZAWA A, et al. Plasticity in light reactions of photosynthesis for energy production and photoprotection[J]. Journal of Experimental Botany, 2005, 56 (411): 395-406.
    [25] CHEN X, LIU W Y, SONG L, et al. Adaptation of epiphytic bryophytes in the understorey attributing to the correlations and trade-offs between functional traits[J]. Journal of Bryology, 2016, 38(2): 110-117.
    [26] LI Y, XU S S, GAO J, et al. Chlorella in duces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba[J]. PLoS One, 2014, 9(3): e93290.
    [27] LI Y, XU S S, GAO J, et al. Bacillus subtilis-regulation of stomatal movement and instantaneous water use efficiency in Vicia faba[J]. Plant Growth Regulation, 2016, 78: 43-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700