Study of Oxidation of Carbon Monoxide on the Surface of Sn-doped Carbon Nanotube
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of Oxidation of Carbon Monoxide on the Surface of Sn-doped Carbon Nanotube
  • 作者:MEYSAM ; Najafi
  • 英文作者:MEYSAM Najafi;Medical Biology Research Center, Kermanshah University of Medical Sciences;
  • 英文关键词:catalyst;;nanostructure;;metal adsorption;;oxidation reaction;;adsorption energy
  • 中文刊名:JGHX
  • 英文刊名:结构化学(英文版)
  • 机构:Medical Biology Research Center, Kermanshah University of Medical Sciences;
  • 出版日期:2019-04-15
  • 出版单位:Chinese Journal of Structural Chemistry
  • 年:2019
  • 期:v.38;No.294
  • 语种:英文;
  • 页:JGHX201904004
  • 页数:9
  • CN:04
  • ISSN:35-1112/TQ
  • 分类号:47-55
摘要
In recent years, the discovery of suitable catalyst to the oxidation of carbon monoxide(CO) is a major concern in industry. In present study, in the first step the carbon nanotube(CNT) with Sn was doped and the surface of Sn-CNT via O_2 molecule was activated. In the second step the CO oxidation on the surface of Sn-CNT via Langmuir Hinshelwood(LH) and Eley Rideal(ER) mechanisms was investigated. Results show that O_2-Sn-CNT can oxidize the CO molecule via Sn-CNT-O-O* + CO → Sn-CNT-O-O*-CO → Sn-CNT-O* + CO_2 and Sn-CNT-O* + CO → Sn-CNT + CO_2 reactions. Results show that CO oxidation on activated Sn-CNT surface via the ER mechanism has lower energy barrier than LH mechanism. Finally, calculated parameters reveal that activated Sn-CNT is an acceptable catalyst with high potential to the oxidation of CO molecule.
        In recent years, the discovery of suitable catalyst to the oxidation of carbon monoxide(CO) is a major concern in industry. In present study, in the first step the carbon nanotube(CNT) with Sn was doped and the surface of Sn-CNT via O_2 molecule was activated. In the second step the CO oxidation on the surface of Sn-CNT via Langmuir Hinshelwood(LH) and Eley Rideal(ER) mechanisms was investigated. Results show that O_2-Sn-CNT can oxidize the CO molecule via Sn-CNT-O-O* + CO → Sn-CNT-O-O*-CO → Sn-CNT-O* + CO_2 and Sn-CNT-O* + CO → Sn-CNT + CO_2 reactions. Results show that CO oxidation on activated Sn-CNT surface via the ER mechanism has lower energy barrier than LH mechanism. Finally, calculated parameters reveal that activated Sn-CNT is an acceptable catalyst with high potential to the oxidation of CO molecule.
引文
(1)Rajesh,C.;Majumder,C.CO oxidation on Al-Au nano-composite systems.Chem.Phys.2018,502,18-26.
    (2)Khosravi,A.;Shabanian,R.Experimental and DFT investigation of 3D-HBGP/Pt/Co as a superb electro-catalyst for methanol oxidation reaction.Chem.Phys.2018,91,345-357.
    (3)Nam,I.;Son,H.Colorimetric oxygen sensor based on nano-sized black TiO2 catalysts:DFT modeling and experiments.Mol.Catal.2018,459,16-20.
    (4)Spezzati,G.;Benavidez,D.CO oxidation by Pd supported on CeO2(100)and CeO2(111)facets.Appl.Catal.B:Environ.2019,243,36-46.
    (5)Wang,Y.;Chen,Z.Preparation and catalytic behavior of reduced graphene oxide supported cobalt oxide hybrid nanocatalysts for CO oxidation.Trans.Non.Met.Soc.China 2018,28,2265-2273.
    (6)Lu,Z.;Yang,M.CO oxidation on Mn-N4 porphyrin-like carbon nanotube:a DFT-D study.Appl.Sur.Sci.2017,426,1232-1240.
    (7)Hoda,F.;Saif,M.New nano-complexes of Zn(II),Cu(II),Ni(II)and Co(II)ions;spectroscopy,thermal,structural analysis,DFT calculations and antimicrobial activity application.J.Mol.Struct.2017,1147,452-461.
    (8)Shilina,M.;Rostovshchikova,T.Polynuclear Co-oxo cations in the catalytic oxidation of CO on Co-modified ZSM-5 zeolites.Mat.Chem.Phys.2019,223,287-298.
    (9)Weijing,D.;Weihong,Z.The application of DFT in catalysis and adsorption reaction system.Ene.Proc.2018,152,997-1002.
    (10)Sharma,N.;Jindal,N.Hydrothermally synthesized stannic oxide nano-hexagons.Mat.Today:Proc.2018,5,13807-13815.
    (11)Gumaa,A.A novel nano-palladium complex anode for formic acid electro-oxidation.Electro.Acta 2016,215,334-338.
    (12)Pillai,S.C2-hydrocarbon adsorption in nano-porous faujasite:a DFT study.Mat.Today:Proc.2019,2,436-445.
    (13)Rajesh,C.;Majumder,C.CO oxidation on AlAu nano-composite systems.Chem.Phys.2018,502,18-26.
    (14)Spezzati,G.CO oxidation by Pd supported on CeO2(100)and CeO2(111)facets.Appl.Catal.B:Environ.2019,243,36-46.
    (15)Lu,Z.CO oxidation on Mn-N4 porphyrin-like carbon nanotube:a DFT-D study.Appl.Surf.Sci.2017,426,1232-1240.
    (16)Mukherjee,D.Noble metal-free CeO2-based mixed oxides for CO and soot oxidation.Catal.Today 2018,309,227-235.
    (17)Razavi,R.Oxidation of NO on surface of Sn-doped carbon nanocone:DFT study.Inorg.Chem.Commun.2018,94,85-91.
    (18)Riyaz,M.Dispersion corrected density functional study of CO oxidation on pristine/functionalized/doped graphene surfaces in aqueous phase.J.Mol.Graph.Mod.2018,79,27-34.
    (19)Wang,N.CO oxidation catalyzed by silicon carbide(SiC)monolayer:a theoretical study.J.Mol.Graph.Mod.2016,66,196-200.
    (20)Orazi,V.DFT study of benzene and CO co-adsorption on PtCo(111).Appl.Surf.Sci.2014,289,502-510.
    (21)Ketabchy,M.;Sample,D.J.;Wynn-Thompson,T.;Yazdi,M.N.Thermal evaluation of urbanization using a hybrid approach.J.Environ.Econ.Manag.2018,226,457-475.
    (22)Joshaghani,M.;Ghasemi-Fare,O.;Ghavami,M.Experimental Investigation on the effects of temperature on physical properties of sandy soils.In IFCEE 2018,12,675-685.
    (23)Khodabandeh,E.;Rozati,S.A.;Joshaghani,M.;Akbari,O.A.;Akbari,S.;Toghraie,D.Thermal performance improvement in water nanofluid/GNP-SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs.J.Therm.Anal.Calorim.2018,12,1-13.
    (24)Jafarzadeh,F.;Jahromi,H.F.;Yoosefi,S.;Sehizadeh,M.;Joshaghani,M.;Alavi,M.Dynamic response of buried gas pipelines due to earthquake induced landslides by nonlinear numerical modeling.In The 15th World Conference on Earthquake Engineering,Beijing,China(15WCEE)2012.
    (25)Pourmand,G.;Safavi,M.;Ahmadi,A.;Houdeh,E.;Noori,M.;Mashhadi,R.;Pourmand,N.EPCA2.22:a silver lining for early diagnosis of prostate cancer.Urology J.2016,13,2845-2848.
    (26)Bakhshi,H.;Khodabandeh,E.;Akbari,O.;Toghraie,D.;Joshaghani,M.;Rahbari,A.Investigation of laminar fluid flow and heat transfer of nanofluid in trapezoidal microchannel with different aspect ratios.Int.J.Numer.Methods Heat Fluid Flow 2018,https://doi.org/10.1108/HFF-05-2018-0231.
    (27)Jabbar,M.;Ghorbaniparvar,H.Use of GC-MS combined with resolution methods to characterize and to compare the essential oil components of green and bleached cardamom.IJRCE 2014,5-10.
    (28)Azhiri,R.B.;Bideskan,A.S.;Javidpour,F.;Tekiyeh,R.M.Study on material removal rate,surface quality,and residual stress of AISI D2 tool steel in electrical discharge machining in presence of ultrasonic vibration effect.Int.J.Adv.Manuf.Technol.2018,12,1-12.
    (29)Ebrahimi,A.;Hosseini,S.A.;Rahim,F.Immunosuppressive therapy in allograft transplantation:from novel insights and strategies to tolerance and challenges.Cent.Eur.J.Immunol.2014,12,400-4005.
    (30)Shishehbor,M.;Dri,F.L.;Moon,R.J.;Zavattieri,P.D.A continuum-based structural modeling approach for cellulose nanocrystals(CNCs).J.Mech.Phys.Solids 2018,111,308-332.
    (31)Shishehbor,M.;Zavattieri,P.D.Effects of interface properties on the mechanical properties of bio-inspired cellulose nanocrystal(CNC)-based materials.J.Mech.Phys.Solids.2019,124,871-896.
    (32)Shishehbor,M.;Pouranian,M.R.;Ramezani,M.Molecular investigations on the interactions of graphene,crude oil fractions and mineral aggregates at low,medium and high temperatures.Petrol.Sci.Technol.2019,https://doi.org/10.1080/109 16466.2019.1566254.
    (33)Shishehbor,M.;Pouranian,M.R.;Imaninasab,R.Evaluating the adhesion properties of crude oil fractions on mineral aggregates at different temperatures through reactive molecular dynamics.Petrol.Sci.Technol.2018,https://doi.org/10.1080/1 091 6466.2018.1531032.
    (34)Pouranian,M.R.;Imaninasab,R.;Shishehbor,M.The effect of temperature and stress level on the rutting performance of modified stone matrix asphalt.Road Mater.Pavement 2018,12,1-13.
    (35)Nofeli,F.;Arabshahi,H.Electronic transport properties in bulk ZnO and Zn1-x MgxO using Monte Carlo simulation.Global J.Sci.Fron Res.GJSFR 2015,15,No.3A.
    (36)Nofeli,F.High field electron transport in Aln and AlGaN semiconductors.Int.J.Eng.Res.Appl.2013,3,2679-2682.
    (37)Nofeli,F.;Abedzadeh Fayzabadi,M.Monte Carlo simulation in InAsxP1-x,InAs and InP at high field application.Int.J.Eng.Res.Appl.2013,3,732-735.
    (38)Nofeli,F.;Arabshahi,H.;Tayarani,M.H.Steady-state and transient electron transport in bulk ZnO and Zn1-x Mgx O semiconductors.Int.J.Eng.Techn.Res.2014,2,167-170.
    (39)Nofeli,F.;Tayarani,M.H.;Arabshahi,H.Electron transport properties in bulk ZnO and Zn1-x Mgx O materials.Int.J.Eng.Techn.Inve.2014,4,22-25.
    (40)Chamkouri,N.;Khodadoust,S.;Ghalavandi,F.Solid-phase extraction coupled with HPLC-DAD for determination of B vitamin concentrations in halophytes.J.Chromatogr.Sci.2015,53,1720-1724.
    (41)Chamkouri,N.;Niazi,A.;Zare-Shahabadi,V.Development of a novel pH sensor based upon Janus Green B immobilized on triacetyl cellulose membrane:experimental design and optimization.Spectrochim.Acta A Mol.Biomol.Spectrosc.2016,156,105-111.
    (42)Akbari,A.;Chamkouri,N.;Zadabdollah,A.Determination trace levels of vitamin C and folic acid in urine sample by ultrasound-assisted dispersive liquid-liquid microextraction method coupled HPLC-UV.Orient.J.Chem.2016,32,3027-3033.
    (43)Razavi,R.;Hosseini,S.M.A.;Ranjbar,M.Production of nanosized synthetic rutile from ilmenite concentrate by sonochemical HCl and H2SO4leaching.Iran J.Chem.Chem.Eng.2014,33,29-36.
    (44)Razavi,R.;Kardani,M.N.;Ghanbari,A.;Lariche,M.J.;Baghban,A.Utilization of LSSVM algorithm for estimating synthetic natural gas density.Petrol.Sci.Technol.2018,36,807-812.
    (45)Parsaee,Z.;Karachi,N.;Razavi,R.Ultrasound assisted fabrication of a novel optode base on a triazine based Schiff base immobilized on TEOS for copper detection.Ultrason Sonochem.2018,47,36-46.
    (46)Zahedifar,M.;Razavi,R.;Sheibani,H.Reaction of(chloro carbonyl)phenyl ketene with 5-amino pyrazolones:synthesis,characterization and theoretical studies of derivatives.J.Mol.Struct.2016,1125,730-735.
    (47)Karachi,N.;Hosseini,M.;Parsaee,Z.;Razavi,R.Novel high performance reduced graphene oxide based nanocatalyst decorated with Rh2O3/Rh-NPs for CO2 photoreduction.J.Photochem.Photobiol.A Chem.2018,364,344-354.
    (48)Bie,R.J.;Siddiqui,M.K.;Razavi,R.;Taherkhani,M.;Najafi,M.Possibility of C38 and Si19 Ge19 nanocages in anode of metal ion batteries:computational examination.Acta Chim.Slov.2018,65,303-311.
    (49)Razavi,R.;Hosseini,S.M.A.;Ranjbar,M.Production of nanosized synthetic rutile from ilmenite concentrate by sonochemical HCl and H2SO4leaching.Iran J.Chem.Chem.Eng.2014,33,29-36.
    (50)Koochakpoor,G.;Hosseini Esfahani,F.;Daneshpour,M.S.;Hosseini,S.A.;Mirmiran,P.Effect of interactions of polymorphisms in the melanocortin-4 receptor gene with dietary factors on the risk of obesity and type 2 diabetes:a systematic review.Diabetic Med.2016,33,1026-1034.
    (51)Koochakpoor,G.;Daneshpour,M.S.;Mirmiran,P.;Hosseini,S.A.;Hosseini-Esfahani,F.;Sedaghatikhayat,B.;Azizi,F.The effect of interaction between melanocortin-4 receptor polymorphism and dietary factors on the risk of metabolic syndrome.Nutr.Metab.2016,13,35.
    (52)Rahim,F.;Allahmoradi,H.;Salari,F.;Shahjahani,M.;Fard,A.D.;Hosseini,S.A.;Mousakhani,H.Evaluation of signaling pathways involved inγ-globin gene induction using fetal hemoglobin inducer drugs.Int.J.Hematol.Oncol.Stem.Cell.Res.2013,7,41-45.
    (53)Krasheninnikov,A.V.;Lehtinen,P.O.Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential.Phys.Rev.Lett.2009,102,1-10.
    (54)Afshar,A.;Hosseini,M.S.;Behzadfar,E.Numerical study of the agglomerates dispersion behavior in shear and elongational flow fields in viscous media using Population Balance Modeling(PBM).Sci.Iran.Trans.C Chem.Chem.Eng.2014,21,2107.
    (55)Esrafili,M.D.;Saeidi,N.Sn-embedded graphene:an active catalyst for CO oxidation to CO2.Physica E 2015,74,382-387.
    (56)Esrafili,M.D.;Nematollahi,P.A comparative DFT study on the CO oxidation reaction over Al-and Ge-embedded graphene as efficient metal-free catalysts.Appl.Surf.Sci.2016,378,418-425.
    (57)Esrafili,M.D.;Nematollahi,P.Pd-embedded graphene:an efficient and highly active catalyst for oxidation of CO.Superlattice.Microst.2016,92,60-67.
    (58)Esrafili,M.D.;Saeidi,N.A DFT study on the catalytic hydrogenation of CO2 to formic acid over Ti-doped graphene nanoflake.Chem.Phys.Lett.2017,671,49-55.
    (59)Ranjbar,O.A.;Lin,Z.;Volkov,A.N.One-dimensional kinetic simulations of plume expansion induced by multi-pulse laser irradiation in the burst mode at 266 nm wavelength.Vacuum.2018,157,361-375.
    (60)Zhao,Y.;Truhlar,D.G.The M06 suite of density functional for main group thermochemistry,thermochemical kinetics,noncovalent interactions,excited states,and transition elements:two new functional and systematic testing of four M06-class functionals and 12 other functionals.Theor.Chem.Account 2008,120,215.
    (61)Mahmood,A.;Longo,R.L.The interaction of OH(X2Π)with H2:ab initio potential energy surfaces and bound states.Phys.Chem.Chem.Phys.2014,87,1-12.
    (62)Wheeler,S.E.;Moran,A.Thermochemical kinetics for multireference systems:addition reactions of ozone.J.Phys.Chem.A 2009,113,10376.
    (63)Hohenstein,E.G.;Chill,S.T.Assessment of the performance of the M05-2X and M06-2X exchange-correlation functionals for noncovalent interactions in biomolecules.J.Chem.Theory Comput.2008,4,1996-1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700